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ABSTRACT 

A self-contained analysis for arbitrary circulation controlled 

airfoils in incompressible flow is developed.  The analysis predicts 

the blowing slot conditions required to produce a specified lift co- 

efficient on a given airfoil with given free stream conditions. 

An iterative procedure is used to find the blowing slot con- 

ditions that allow the Thwaltes condition of constant pressure in 

the separated region to be satisfied.  With the input given, a pot- 

ential flow analysis is performed using the Theodorsen method. 

Boundary layer analyses for the lower and upper surfaces then yield 

the separation pressure on the lower surface and the boundary layer 

properties at the slot on the upper surface. The flow is initially 

laminar and usually becomes turbulent. The Cebeci, Smith finite dif- 

ference method is used and an eddy viscosity model is used for tur- 

bulent flow.  Blowing slot values are assumed and a turbulent wall 

jet analysis is performed to determine the wall pressure at separa- 

tion on the upper surface.  If the two separation pressures, upper 

and lower, do not agree, new slot values are assumed and the wall jet 

analysis is repeated. Wall jet calculations include curvature effects 

on the jet and external flows, and approximate corrections for large 

pressure gradients. An eddy viscosity model is used but is modified 

to allow a negative shear stress at the velocity maximum.  A fully 

developed laminar or turbulent channel flow is used for the slot pro- 

file. A finite difference method based on the Keller, Cebeci method 
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is used for vail jet calculations. 

Calculations are performed and compared to Kind's experimental 

data.  Results are in good agreement for the bloving coefficient and 

local flov details. 
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UQ potential flow velocity at surface, U^ - Vy 

U Figs. 4, 5; velocity at outer edge of wall Jet 

Ct *lg- 5; minimum velocity 

OU velocity in X.c direction in 2 plane 

Us Figs. 4, 5; velocity 

Uv friction velocity; ^ fur //° ' 

(f velocity in y    direction 

LT/ perturbation velocity in y    direction 

V resultant velocity 

V, resultant lnvlscld velocity at surface 

[f velocity in y     direction in ? plane 

HJ- complex potential function 



Vy/  general function 

X  Fig. 1; curvilinear coordinate measured from front stagnation 

point 

X^  Fig. 3; chordwise coordinate in £ plane 

y      Fig. 1; curvilinear coordinate normal to surface 

y       Fig. 3; coordinate normal to chord in 2 plane 
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1.  INTRODUCTION 

Interest in STOL flight has led to an interest in circulation 

controlled airfoils. A circulation controlled airfoil has a bluff 

trailing edge with a tangential blowing slot located slightly up- 

stream of the trailing edge.  Experiments by Kind (Refs. 4, 5, 15) 

and later by others have shown that such an airfoil can produce re- 

latively high lift coefficients for relatively low blowing rates from 

the slot.  Circulation controlled airfoils thus provide a relatively 

simple and efficient method of obtaining STOL flight. 

The principle of a circulation controlled airfoil is based on 

the fact that there are any number of valid potential flow solutions 

(each with a different value of the circulation, and therefore lift) 

for an airfoil with a bluff trailing edge.  In a real (viscous) fluid, 

the circulation that will actually develop depends on the separation 

characteristics on the upper and lower surfaces.  By introducing 

blowing on the upper surface, separation on the upper surface is de- 

layed.  As the blowing is increased, the upper surface separation 

point moves further back around toward the lower surface.  As this 

occurs, the potential flow rear stagnation point also moves down, and 

thus the front stagnation point and the circulation are altered.  The 

blowing therefore causes the flow over the entire airfoil to be alter- 

ed.  A relatively small change in the location of the stagnation 

point results in a large change in the circulation, and therefore in 

the lift.  Since the blowing is used only to delay separation, the 

amount required is small compared to that required for a jet flap. 



The blowing is effective in delaying separation because of the 

Coanda effect.  This effect (Ref. 2) refers to the ability of a plane 

wall jet to follow the contour of a convex curved boundary adjacent 

to it. Downstream of the blowing slot, a wall jet develops on the 

convex surface of the airfoil.  Because of the Coanda effect, the 

wall jet tends to remain attached to the surface.  Since the wall jet 

is considerably more energetic than the conventional boundary layer 

that would exist if the wall jet were not present, the wall jet can 

resist separation for a significantly longer distance. 

The flow conditions on a circulation controlled airfoil are in- 

dicated in Fig. 1.  Beginning at the front stagnation point, a bound- 

ary layer develops along the lower surface and eventually separates. 

Also beginning at the front stagnation point, a boundary layer de- 

velops along the upper surface and eventually reaches the blowing 

slot.  Both the upper and lower surface boundary layer are initially 

laminar and then usually become turbulent.  A turbulent wall jet de- 

velops downstream of the blowing slot and eventually separates.  A 

typical wall jet development is illustrated in Fig. 2. A separation 

region exists between the wall jet separation point and the lower sur- 

face boundary layer separation point. 

For a given airfoil with given free stream conditions, the upper 

surface separation point is determined by the amount of blowing used. 

A change in the airfoil shape or free stream conditions also results 

in a change in the separation point, so the circulation is a function 

of the airfoil shape, free stream conditions, and blowing rate. 



The purpose of the present analysis is to obtain a self- 

contained procedure to predict the performance of arbitrary circul- 

ation controlled airfoils. An outline of the procedure is given in 

the next section. 



2.  OUTLINE OF THE THEORY 

The purpose of the present analysis is to predict the blowing 

slot conditions required to produce a specified lift coefficient 

for a given circulation controlled airfoil with given free stream 

conditions. This section presents an outline of the calculation 

procedure and general considerations involved. The following three 

sections present details of the calculations along with a review of 

the pertinent literature. 

Input for the present analysis consists of the airfoil geometry, 

the angle of attack X , the free stream Reynolds number ^€o0 , and 

the prescribed lift coefficient CJ .  The airfoil geometry includes 

the location and thickness of the blowing slot, which is assumed to 

be tangential to the airfoil surface. 

With the input given, a potential flow analysis is performed. 

The potential flow analysis provides the location of the front stag- 

nation point, the rear (potential flow) stagnation point, and the 

velocity and pressure distribution around the airfoil. The velocity 

and pressure distributions are then converted to the form required 

for a boundary layer analysis. 

A boundary layer analysis is then performed for the lower sur- 

face of the airfoil.  The analysis starts at the front stagnation 

point and proceeds downstream until separation occurs.  With the lo- 

cation of the separation point known, the pressure coefficient at sep- 

aration on the lower surface Cp is known from the potential 

flow analysis.  The boundary layer flow is initially laminar, but 



usually becomes turbulent before separation occurs.  For low Reynolds 

numbers the flow may remain laminar, but in either case the analysis 

determines Cv> 

A boundary layer analysis is also performed for the upper sur- 

face of the airfoil. The analysis starts at the front stagnation 

point and proceeds downstream to the blowing slot.  In general, the 

last point at which boundary layer calculations are performed is 

slightly upstream of the blowing slot;  however, the boundary layer 

properties at this point are used for the boundary layer properties 

at the blowing slot. The upper surface boundary layer is also init- 

ially laminar, but becomes turbulent before it reaches the blowing 

slot.  Because of the prevailing pressure gradients, the upper sur- 

face boundary layer will normally become turbulent even for relativ- 

ely low Reynolds numbers.  If the boundary layer separates upstream 

of the blowing slot, calculations are terminated.  If the boundary 

layer remains attached at the slot, the analysis provides the bound- 

ary layer properties at the slot. 

A turbulent wall jet analysis is then performed.  The analysis 

begins at the blowing slot and proceeds downstream until separation 

occurs.  When separation occurs, the wall pressure coefficient at 

separation on the upper surface Cp      is known from the wall jet 

analysis. The correct blowing slot conditions are those conditions 

that result in a constant wall pressure in the separated region, 

i.e., C-p ■ CT> ^  .  This is known as the Thwaites condition 

(Ref. 10), and is also experimentally justified.  Since it is nee- 



essary to know the bloving slot conditions In order to perform the 

wall jet calculations to determine Cp ,  t an iterative proced- 

ure is required.  Blowing slot conditions are assumed and these con- 

ditions, along with the known upstream boundary layer properties, 

provide the starting conditions for the turbulent wall jet analysis. 

Wall jet calculations are then performed from the blowing slot down- 

stream until separation occurs, yielding a value of Cp?fp  •  In 

general, the calculated value of Cg     ^ will not equal the pre- 

viously determined value of ^Lp sep .     •  New blowing slot conditions 

are then assumed and the wall jet calculations are repeated until 

(2p and CLp agree to within a prescribed tolerance. 

Then the Thwaites condition is satisfied, and the assumed blowing 

slot conditions are the correct ones for the prescribed input con- 

ditions. 

The procedure described above constitutes a self-contained 

analysis of circulation controlled airfoils, provided the calcula- 

tions can be performed for arbitrary airfoil shapes without the use 

of experimental data. Well developed and tested general methods are 

available for the potential flow and boundary layer calculations. 

The wall jet region is one of high complexity.  Theories for this 

region are presently semi-empirical relying as they do on experimen- 

tal data such as the surface pressure distribution. A major effort 

in this work Involved the generation of a self-contained analysis 

for the wall jet region. 



The potential flow is calculated by the Theodorsen method (Ref. 

7) of conformal transformation. This is an exact method and applies 

to arbitrary airfoil shapes. It can also be used without difficulty 

in the present application where the lift coefficient is prescribed. 

Details of the method are given in Section 3. 

Boundary layer calculations are performed using the Cebeci, 

Smith finite difference method (Ref. 8).  For turbulent flow, the 

Reynolds stresses are evaluated using an eddy viscosity coefficient, 

while for laminar flow the eddy viscosity coefficient is set equal 

to zero.  The method provides an exact numerical solution for lam- 

inar flow, and has been found to be one of the better methods for 

turbulent flow (Ref. 13).  Transition from laminar to turbulent flow 

is assumed to occur when the momentum thickness Reynolds number is 

640 for a favorable pressure gradient or 320 for an adverse pressure 

gradient.  Caster's (Ref. 9) experimental relations for the bursting 

of short laminar separation bubbles are also included in the tran- 

sition cirteria if the flow is approaching laminar separation.  If 

trip wires are used, transition is assumed to occur at the location 

of the trip wire (if transition has not already occurred upstream of 

the wire).  Separation for either laminar or turbulent flow is de- 

termined by the wall shear stress becoming zero. Details of the 

method are given in Section A. 

There are several difficulties that complicate the wall jet an- 

alysis. The presence of the upstream boundary layer means that there 

is always a relative minimum in the velocity profile for some dis- 

tance downstream of the blowing slot.  For typical circulation con- 
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trolled airfoil applications, however, the velocity minimum is only 

significant for a relatively short distance downstream of the slot. 

The wall jet profile of most significance for circulation control 

applications is therefore one with a velocity maximum but no minimum. 

The inner portion (below the velocity maximum) of such a profile has 

features of a conventional turbulent boundary layer, while the outer 

portion (above the velocity maximum) has features of a free turbulent 

jet.  These analogies are not exact, however, because the two regions 

develop simultaneously.  Eddy viscosity models seem to give reason- 

able shear stress results for most of the inner and outer regions, 

but in general a somewhat arbitrary fairing is required to obtain a 

continuous eddy viscosity distribution.  This is because the eddy 

viscosity in the outer region tends to be much larger (a difference 

of a factor of 10 is not uncommon).  Of perhaps more fundamental 

importance is the fact that an eddy viscosity model does not seem to 

be accurate near the velocity maximum.  Experiments show that the 

shear stress near the velocity maximum is usually negative, with a 

magnitude comparable to the wall shear stress.  However, an eddy vis- 

cosity approach gives a zero shear stress at the velocity maximum. 

In the case of a flow with curvature an eddy viscosity approach gives 

a nonzero shear stress at the velocity maximum, but the magnitude of 

the shear stress is nowhere near large enough to agree with experi- 

ment. 

For circulation control applications, additional direct and in- 

direct difficulties arise because the streamlines have a small radius 

of curvature.  This results from a small surface radius of curvature 



m^-~ - —    

plus the Coanda effect.  A conventional order of magnitude analysis 

shows that the radius of curvature of a streamline is ( 7^+  y    ), 

where <  is the surface radius of curvature and y     is the normal 

coordinate of the streamline.  The normal pressure gradient is there- 

fore no longer negligible and the pressure varies across the jet. 

From the irrotational flow results, which must also be corrected for 

curvature effects, the velocity and pressure are known at the outer 

edge of the jet.  However, the pressure in the jet, including the 

wall pressure, must be calculated during the wall jet solution. 

These direct curvature effects can be handled without difficulty 

by retaining appropriate curvature terms in the equations;  however, 

the indirect effects of curvature are more of a problem.  The most 

significant indirect effect is that large potential flow velocity 

and pressure gradients are associated with a small surface radius of 

curvature.  As a result of the sustained severe adverse pressure 

gradient, the wall jet thickens rapidly, and a streamline radius of 

curvature is no longer equal to ( H -h / ).  If this effect is not 

adequately accounted for, the calculated wall pressure will not be 

accurate, so separation cannot be determined accurately.  Retaining 

additional terms in the y momentum equation can account for this 

effect.  Unfortunately, however, the significant additional term re- 

quired cannot be handled exactly within boundary layer theory since 

it involves second order streamwise derivatives.  Over the region 

where the above correction is required, an analogous correction to 

the potential flow velocity is required to obtain an accurate value 

for the outer edge of the jet. 
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Curvature also tends to Increase the shear stress in the outer 

portion of the jet, and tends to decrease it in the inner portion. 

Corrections are available to account for this, but additional uncer- 

tainties are introduced since the outer turbulence spilling over in- 

to the inner region tends to offset the decrease in the inner region. 

A final difficulty, which is not inherent but is common, is that 

many circulation controlled airfoils have a discontinuous radius of 

curvature at the bloving slot.  This results from truncating the air- 

foil at the blowing slot and adding a circular trailing edge in 

place of the truncated portion.  In general, it is possible to do 

this and still maintain a continuous shape and slope, but the radius 

of curvature is normally discontinuous.  For calculations, the 

radius can be faired in, but it seems one fairing is appropriate for 

the wall jet equations while another is appropriate for the outer 

edge conditions. 

The basic formulation of the wall jet problem consists of the 

boundary layer equations for the case where the surface radius of 

curvature is the same order of magnitude as the thickness of the 

viscous region.  The turbulent Reynolds stresses are evaluated in 

terms of an eddy viscosity coefficient.  This basic formulation is 

altered to allow the shear stress to be negative at the velocity max- 

imum, and to correct the y momentum equation for streamline curva- 

ture effects that are not adequately described by conventional 

boundary layer approximations.  These alterations were found to be 

necessary in order to obtain useful results, although the need for 
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them could probably be reduced by use of experimental data In the 

calculations.  The shear stress modification applies near the velo- 

city maximum and is based on an extension of mixing length theory. 

The curvature modification uses average values to approximate a term 

that is otherwise unmanageable.  Both of these modifications are pre- 

liminary, but seem to be workable.  To obtain the outer boundary con- 

ditions, the potential flow velocity is modified by a standard cur- 

vature correction along with an additional correction similar to 

that used in the wall jet.  The pressure is obtained from the vel- 

ocity and total pressure, where  the total pressure allows for the 

remains of the upstream boundary layer.  This procedure is used for 

the outer edge conditions downstream of the point where the velocity 

minimum essentially disappears. Upstream of that point, the wall jet 

calculations include the relative minimum velocity, and the outer 

edge conditions apply at a point corresponding to the outer edge of 

the upstream boundary layer.  Outer edge conditions for this region 

are taken as the uncorrected potential flow velocity and pressure. 

The reasons for using different conditions for the two regions are to 

allow for the curvature discontinuity that typically occurs at the 

slot, and to switch smoothly from a profile with a relative minimum 

velocity to one without a minimum. 

The wall jet equations are solved by a finite difference method 

based on the Keller, Cebeci method (Ref. 14). Details are given in 

Section 5. Although most wall jet analyses use integral methods, a 

finite difference method was selected since it offered some potential 

advantages, such as being able to determine separation by the wall 
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shear stress becoming zero, having the possibility of more flexabil- 

ity in handling profiles with a minimum velocity, and being able to 

start at the slot without requiring a separate mixing region analysis. 

A disadvantage is that more detailed information is required, but the 

more elaborate integral methods require almost the same information. 

Since the wall jet calculations are repeated during the iterative 

procedure, a relatively quick and efficient procedure is required. 

Also, the shape of a wall jet profile can require two to three times 

as many grid points as a conventional boundary layer in order to ob- 

tain comparable accuracy in the solution. Therefore, a method that 

is capable of reasonable accuracy with a relatively coarse grid is 

helpful.  The Keller, Cebeci method satisfies these requirements and 

is relatively easy to use and was therefore selected. 

€J 
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3.  POTENTIAL FLOW ANALYSIS 

The potential flow is found by the Theodorsen method of con- 

formal transformation.  This is a direct method for finding the po- 

tential flow over a given arbitrary, closed two-dimensional body. 

The method is exact although in practice solutions must be obtained 

numerically.  The Theodorsen method is reviewed herein in sufficient 

detail so that the computer program in the Appendix can be under- 

stood.  Additional details may be found in Ref. 7. 

It is well known from potential flow theory that the flow over 

a given airfoil can be found by conformally transforming the airfoil 

shape into a circle.  The Theodorsen method transforms the given air- 

foil shape into a circle with the aid of an intermediate transforma- 

tion as shown in Fig. 3.  The reason for using the intermediate tran- 

sformation and for taking the airfoil coordinate system as shown is 

that convergence of the final transformation is enhanced. 

The first transformation maps the airfoil shape ( ^ plane) 

into a "nearly circular" curve C' in the 2 plane.  The transforma- 

tion is analogous to a Joukowski transformation, and is given by 

J* 
21 r     ^        2' (3-1) 

where        ? -.  Xr_ +  l /c (3-2a) 

*     ÖG  ^ (3-2b) 
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The independent variables in the ^ plane are taken as ( ^ Oo ). 

The constant IQ   is defined by 

where f?       and  £?xe are the lea(*ing and trailing edge radii of 

curvature of the airfoil. 

Substituting (3-2) into (3-1) and equating real and imaginary 

parts gives 

\: =    Z.lo   (V44.U)    £J&4L.LH   V (3-3a) 

/c = 2i^<uU      c MV. r (3_3b) 

This transformation is unique if  OJ  is restricted to O ir üO *. Z.)T. 

Eq. (3-3) is then inverted to give Uj  (*c } yc) and C^ (Xc Vr ) ' 

Combining (3-3a) and (3-3b), and using trigonometric and hyperbolic 

function identities yields 

and 

-^*-     x^*•'^Äv(-T-/', ] (3"4b) 

where 
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The correct sign for (/y , and the correct quadrant for UO   follow 

by inspection of Eq. (3-3). 

With y      ^and (j(xC;7c)known, the first transformation is 

:omplete. That is, for each airfoil input point ( Xc yc )> a point 

3 ) is found. The resulting points ( f    CO  ) a*"e considered 

to form a function y> a U> (Cu)). The curve C/ in the -£_   plane is 

then given by g' zs.   ^ o P<c°^lft*  The function ^(O)) is gener- 

ally a slowly varying function (this is equivalent to saying < J   is 

"nearly circular") and is periodic with period X-Y    • 

The transformation from the ^ to the j     plane is now con- 

sidered.  Polar coordinates as shown in Fig. 3 are used, where (X cß) 

are taken as the independent variables.  On the circle, which is cen- 

tered at the origin, A * A^ ■ constant, and the radius of the 

circle is therefore ' r. ■ 0 £ • 

The transformation used is 

jU   -^ ^  £   °*/" •*" Lfa (3-5) 

where the constants ( £>(   ^f ) are real.  Since zf ~-v     as 

-> oO     , the planes coincide at oo and the free stream 

conditions are the same in both. Substituting the respective polar 

coordinates for 2    and J into (3-5) and equating real and im- 

aginary parts of the resulting expression gives 

T    * 
and 



16 

The last two equations represent the mapping of any point in the 2 

plane to the corresponding point in the    plane.  The coefficients 

( j^   t    ) are determined from the requirement that the curve 

maps into the circle.  Therefore, from this point on the variables 

will be used in the restricted sense that ( y oj) define the curve 

C1  and ( Xj §  ) define the circle.  Then, since X — \*on tne 

circle, 

OO 

<^=XK+Z   (A^C<w.Ai<p + "B    :>.,   .-.■(fj o-6a) 

and 

z: 6o-<p =   2:     ( 73^ ,Qxy4/fxJ(# -   d,: Asjn/nip)       (3-6b) 

where -,*X» 

°/» k**'     P" 

Eq. (3-6a) is the standard form of a Fourier series, and it follows 

that the coefficients are given by 

2-* 

x* = Ao=   Tv J   W((P)ö/4? 
0 

^.7r 

^ = Hr J y^<p)^< -     ^ 
0 

^ ~  ^T  f   P(tf)>U>iyw?   c/f T    J 
o 
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Eqs. (3-6a) and (3-6b) give (f*    and CO   as functions of (p , 

and the resulting points \^((f)  ; ^-^(^)) J represent points on the 

curve C'  •  From the 2 ■?' transformation it is known that ^ (uS) 

also represents the curve Q1   ;  therefore, <fJ   and ^ represent 

the same dependent variable, but considered as a function of differ- 

ent independent variables.  The solution for the £' *? transformation 

then requires a solution for the functions satisfying (3-6a) and 

(3-6b) where '■+' (U>)  is a known function. 

It is convenient to introduce a variable £ defined by 

€ = OJ  - CP (3-7) 

Like (fJ   , £ may be considered a function of either £u or   (H   , 

and a similar notation is employed, i.e., £ =. £ (<ß) = £ (co) • 

It follows from (3-6b) that £ is periodic with period 2.77* . 

Applying (3-6b) to a specific point on the circle (D = Cp'and using 

the definition of the Fourier coefficients gives 

o J 

Interchanging the order of summation and integration, and using a 

trigonometric identity then yields 

JOG 
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Introducing the rather obscure identity 

then yields 

6 w = ^ fa f r«p) **t £g<ii 

" z* J  W L     „■,>, *• j ^ 

The first integral is independent of /^ , while the second is zero 

in the limit.  The equation then becomes 

€«p') = £f Y«p; set ££ <*<? (3-8> 
O 

The integral in (3-8) is singular, and the Cauchy principle value 

must be used.  The integral is usually called Poisson's integral. 

If the function ^((p)  were known, (3-8) would be a definite 

integral for €($)•       However, what is known is ^ (to) , where 

(p = 60 - «£ , and (3-8) is therefore an integral equation in € . 

The integral equation is solved by the method of successive approxi- 

mations. Convergence of this method ultimately depends only on the 

function ^(üO)and the initial approximation (£0 for the function £• 

For most airfoil shapes, ^ (to) is a slowly varying function, £ =■ o 

is a good initial guess, and only one step in the iteration is suffi- 

cient for very good results.  In this case, (3-8) can be reduced to 
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7~Tt 

€ (to1) * 6, (to1) ^ jx fc^t !££>! . YLuictc*    (3-9) 
o 

Eq. (3-9) gives £ ^6u')as a definite integral since ^ (iO) is known. 

In general the integral must be evaluated numerically since *f> {u))ia 

only known numerically.  This is done by prescribing a value of U)1, 

performing the integration, and repeating this process until a suff-»- 

icient number of points are obtained to define the <£ (oj)function. 

With €((*>)   known, <^(co) — do - 6(a)) is known, ^ (<P)      is 

therefore known, and the second transformation is complete. 

The velocity \J   on the surface of the airfoil is obtained from 

thecomplex potential function.  Since 

[^Sr]—. - <*-«"-•) airfoil 
it follows that 

v ~ I ^r 13lrfo11      I-7PTIcircle ■ "^' t*'38 'airfo11 

(3-10) 

The complex potential for flow over a circle of radius (X is 

Therefore 

The lift coefficient  £. is related to the circulation /"* by the 

Kutta-Joukowski theorem, which gives 
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C« C V„ 

Then 

.o/WC») 

-^ 

- Z14 Lw. (cp-^) + ox> 
circle      " ■      Y  '   f)f:'t '   (3-11) 

Taking differentials of Z'and J  (with ,\ = \K) gives 

4 - / (. - ^|y<o 
V # 

Then,   since      J -    fa <2    *  <o l* on the circle 

,yjr /   _     be * I i- jz>\ 0-12) 
1* 1 M^r ■ 

Differentiating  (3-1)  gives 

*/* 

7       uf       ?&0 
Using 2 — b 6  Ö    in the terms in parenthesis then yields 

o/ir'  j =      <Z'<c' ( (3-13) 

oii   I airfoil ^      Uo^^p  T^fto 

Eqs.   (3-10)   through  (3-13)   then give the velocity on the airfoil  sur- 
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face as 

e^|^(^)4-M|, 1- 
■ ■ 

V«> / r       .   ,. z. -             • „    7 f        / - / /. 1     \ t -7n 
(3-14) 

. otto 

Eq. (3-14) applies to airfoils with either sharp or blunt trailing 

edges.  For an airfoil with a sharp trailing edge, ( ^— O    ÜÜ-O) 

at the trailing edge, and the Kutta condition becomes 

I jui^ ( (Q - oi) +      * - O        (JL+        CO- 0 
T 7f tt I 

Since  (^(o)   ss — £ (ö)  . the Kutta condition becomes 

The pressure coefficient on the airfoil surface follows from the 

Bernoulli equation, and is given by 

The potential flow is then known since  \//  and Cp on the 

airfoil surface are known. A different form of the potential flow 

is required as input to the boundary layer program, however, and this 

is considered next. Curvilinear coordinates shown in Fig. 1 are used, 

and ]/.   becomes (JQ  . The curvilinear coordinate y_    is measured 

along the body surface from the front stagnation point, and it is 

therefore necessary to determine the arc length along the airfoil. 
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The arc length /\ A,    between two given points ( Vr % ,    ) and 

( y^ ,     yc .    ) is 

The first form of this equation is used for all increments except 

those adjacent to the leading edge (and trailing edge, if the trail- 

ed /c ing edge is blunt), where —-i— —* oo  . For these Increments, 

oAtc the second form is used, but not directly since   ■ i ■    is usua- 

lly known as a function of %    instead of y .  The square root 

term is expanded to give 

/ 

Then 

Each integral is evaluated numerically. With the arc lengths known, 

the value of X is calculated for each output point (i.e., each 

point at which the velocity \J.  =: Clo i8 known). 
b 

The functions  V  and A     defined by (3-17) are also re- 

quired . 

£*(c)- f "e^i-i) (3-17.) 
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1$*        JU* 
/S ^-'~~    -op-     J(I) (3"17b) 

where U$   ~ U^/V^f 

Both    * and  /S        are evaluated at each output point by evalua- 

ting the required integrals and derivatives numerically.  The de- 

rivatives are evaluated using least-square parabolas for five con- 

secutive nonequally spaced points. 
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4.  BOUNDARY LAYER ANALYSIS 

The boundary layer properties for both laminar and turbulent 

flow are calculated using the Cebeci, Smith finite difference method. 

The turbulent Reynolds1 shear stresses are eliminated by using an 

eddy viscosity expression.  For laminar flow, the eddy viscosity is 

set equal to zero, and the equations reduce to the classical laminar 

boundary layer equations.  Both the streamwise and normal derivatives 

are replaced by finite difference expressions, and the resulting 

algebraic equations are then solved by a matrix factorization method. 

The Cebeci, Smith method has been extensively developed and tested 

against experiments and other theories and has been found to be acc- 

urate (Ref. 8).  The method also predicts either laminar or turbulent 

separation.  The Cebeci, Smith method is reviewed herein in sufficient 

detail so that the computer program in the Appendix can be understood. 

The method has been developed for either two dimensional or ax- 

isymmetric flows (with or without transverse curvature effects). 

For incompressible turbulent boundary layers, the conservation equa- 

tions are: 

Continuity: 

&(**?*)+ -JyOV^-o 

Momentum: 

re. $ *rr $ +g - ±t i [A*U $ -/• **»>]« 
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where      n   for two dimensional flows, and € — / for axis- 

ymmetric flows. The quantity A(X;y) iß the radius from the axis 

of symmetry to the point being considered in the boundary layer. 

In terms of the body geometry 

A (x,y) = A„ (x) + i*y ^^CL <p(x) 

where yt^ (x)        is tne Dody radius, <p(x)      is the angular inclin- 

ation of the body, £j  a /   if transverse curvature effects are 

included, and  £<J =- o   ^  transverse curvature is neglected. 

The boundary conditions considered are 

«. (x,o) = o 

^(XjO) =.   tfcj. (x)   (suction or Injection permitted) 

Defining an eddy viscosity £ by 

and using the Bernoulli equation for -£i-  then yields 

Momentum: 

The continuity equation is identically satisfied by introducing 

the stream function ^ , defined by 

/ULA*   -   (%} y/x 
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ä<S\ w--m 
The independent variables are transformed from (x y) to (t   y) 

where 
X 

Z6 
f (X) =   /*Ä / UeAtr   cir (4-la) 

o 

9U 
7^) = ^ f/L^y (H, 

and a dimensionless stream function -f ($ ^J= " ■ -,  is intro- 

duced.  Then -jj~   =L  —- f and the momentum equation becomes 

(4-2) 

where 

^0  .^f 

and 

The quantity  c C > J/y  is the transverse curvature term. 

The boundary conditions transform to 

f£ ( £ O) = O (4-3.) 
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/ si or Utir 

3* (f, °°J = / (4-3c) 

Eq. (4-3a) is used in obtaining (4-3b). Eq. (4-3b) can be further 

simplified by solving it as an ordinary differential equation in 

-f(?o)     •  Then (4-3d) replaces (4-3b). 

~~l C    UlrvL; (4-3d) 
üzAh 

The Cebeci, Smith eddy viscosity model consists of an inner re- 

presentation £ . near the wall and an outer representation £Q away 

from the wall. The inner expression is 

e, = c/-«~V./W/ 
where  ^ is a constant and, for an impermeable wall*, 

4o = 

P      öoc r 

*See footnote on next page 
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The outer expression is 

C = 

where K   is a constant. The boundary layer thickness £ is taken 

as the value of y  where — - 0.995. With this definition of g" 

the values for the constants are taken* as iC 0.4 and ^- 0.0168. 

The inner and outer expressions are used as follows (for a given 

value of ^  ):  The eddy viscosity £** is taken as £ •  for 

O  £ / £.  N/c   » and is taken as 6* for  y 4 / k   § • The 

value of yc is the value of y at which gt =■ 6*.  The eddv vis" 

cosity £"*~is thus continuous, but in general its derivative has a 

finite discontinuity at y= y .  In terms of ( £ **]) *  the eddy vis- 

cosity expressions become 

e;.Kf(^jE rl if'l 
^y« as 

W / - »y8 -EL X 
licr (4-4a) 

where 

™-JT&. 
*More recent expressions for K_, K , and A , are given in Section 5. 
They should also be used here, but became available too late to make 
the necessary changes. 

A 
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*:- 
Kä.r*T    i" o-w*«/*^ 
^ < i- „* 

AT 

/ + s.s 
/ 0+0 e/«| (4-4b) 

For two dimensional flow or axisymmetric flow without transverse 

curvature, ~t~0^  and these simplify to 

<-*£& ?""''• 
l-Mtf- 

(4-5a) 

In the present application, only two dimensional airfoils are con- 

sidered, and the simpler forms (4-5) are used (with £ -  O also). 

It is convenient to nondimenslonalize ^(x)  •  Th*8 is done 

by defining £*(-£0  as 

v*(*) =    I ^(^:/^(4) (4.6) 

where U* = ^/^.  Then  £ = ^^C  ^ £* 

where  "£<o  =. /° \/ C  fM m    The momentum equation (4-2) then be- 

comes 
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where 

/"»- $ # 
(4-8) 

and 

(»<)    = /'««fee)       W^   , *     * &r <%* 
The eddy viscosity expressions (4-5) become 

' * «■ (% r 

The boundary conditions become 

^* 

|f*F     J       dfe*^/ °>r 

(4-10a) 

(4-10b) 

(4-10c) 
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For two dimensional flow (£=o)f  ^4. follows from (3-14), 

and >    and ß       reduce to the definitions given in (3-17). 

The output from the potential flow program therefore provides all 

the potential flow input needed for the boundary layer program. 

Eq. (4-7) subject to the boundary conditions (4-10) is solved 

by a finite difference procedure (Ref. 8).  First, the ^derivat- 

ives are replaced by finite difference expressions.  For a general 

function 9($*)  > a three point Lagrange polynomial gives 

U 

where 

*,« 
M-i 

5*   ~     * *    * 

A, = 

/lS       « 

The    increments do not have to be equally spaced. For a two point 

formula, (4-11) still holds, with 
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A       —  

4  =  -/  

/43 =   o 

With the c derivatives replaced by finite difference expressions, 

the momentum equation (4-7) becomes 

[>«£ o^tf]' *A <'- ff)+ &£ 

where primes denote 'h    derivatives.  If solutions are known at 

and )?*       .   , this is an ordinary differential 

equation for f   ( 7 ) 

Cebeci, Smith noted that round-off errors could be reduced by 

introducing a "translated stream function" (p  defined by 

P = -f - 7 

Since A- + A9 + A.. ■ 0, the momentum equation in terms of (pis 
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- (?'* i) (A, ip' i Ax <?'«,_, i Aj (p'„.*)] = o (4-i2) 

where (p s ^5 •  Eq» (4-12) will be solved by an iterative proced- 

ure.  It is first linearized by assuming certain terms that make it 

nonlinear are known from a previous iteration (denoted by ^)«  No 

terms are neglected, however, and as the iteration converges the sol- 

ution of the full nonlinear Eq. (4-12) is obtained. 

The linear equation is 

Cebeci, Smith found that round-off errors could be further reduced by 

writing (4-13) in terms of A fy    —  <p - ty .  The equation then be- 

comes 

E, t<(>'"   + F». A<?"  + «$ A<P'  T £"♦ 4<P = €r (4-H) 
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where 

1                E* * o^C (*+*%                                   t 

1              €,= [c^C (»*%]' * <p0 M 

1              ^3 = - ^ (f.'**.; -*.# (<p.'+i)fi, 

6»   = *#fi'rf. 

1                    €s   = -(£-,#« t e^&"'+ e3<pj * e,<p0) 

A                                    -r i& [(&+<)( **■&-. +A,yJ.i.) 

- U"(Ax<PM.,  + A,<fM.j] 

With values of  C known from the previous iteration,  Eq.   (4-14)   is a 

linear equation for   &<ß  .     It is solved by replacing "h   derivatives 

by finite difference expressions.       The finite difference expressions 

0                              are obt. ained  from  the  five point Lagrange polynomial 

■               j<V =   Lj.^ ^-,   *  L-^p.,    i Lift)-); 

f L^Cfj )■,,     *   L/tJ») <j;+x 
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where 

L.<V   = 

Then 

?'- 4 ?<-* * 4.;« *4# *4;,fci *C£v. 
with similar results for the higher derivatives. 

A constant step size j^ in the fj    direction can generally be 

used for laminar flow.  For turbulent flow, however, a constant step 

size results in an excessive number of points.  This is because tur- 

bulent boundary layers have large gradients near the wall (which re- 

quire small step sizes), but may be many times thicker than laminar 

boundary layers. A simple variable-step grid was therefore developed 

by Cebeci, Smith.  In this grid the ratio of lengths of any two ad- 

jacent intervals is constant. Then 

#« *&,        ,   K constant 

The step size then grows progressively larger away from the wall. 

Taking 1>l - o and  ^  = P       , the distance to a grid point is 
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K-l 

The variable grid involves the three parameters  £j    K   , and the 

number of steps /sj .  Table Jr^in Ref. 8 gives suitable combinations 

z. 
of these parameters. 

Applying the finite difference formulas to this grid and to 

(4-14) gives 

for  / = 3, ..., A/-;L 

where 

+ *& «**,<««♦,«,-*-,;♦ 3^7-j 
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i,.=   -?v [6(a'm h    'T 

V * 2- 

+ Z •%  ft'.x^.(K,-4,-»)* T7 K a' 

6> 
/V(' ^ -V., £; 

a- =   Br f £ (a, + K-^) + i^ -5L* (a.-ö,*-**) 

^. 
K3 ,1 

•^,3 i, *   /+K       }     aL=   /tMK1 5L,=   l+K+KX+k 

"6,   = 
a, >?T 

-, -/ _ _       i 

a,tf^/fjt 4***" c* 

ö<= 4 **<*£!. 
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A similar procedure for the point /V-/ gives 

"here R^ ^   S,. [ 6 (&X+K<Z, +K*) + * 't Ct^' 

• (a, a, y- JLZ/< - a, ** + a, /<z- 4,K3- /<yJ 

-/    L <-/        /w   f 

^_ Z 
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<r(> ,o) --- >rrw>     -—fTÄZ:^ (*-17a) 

The boundary conditions (4-10) in terms of (p  become 
fr* 

#'(£* 7»)* ° (4_17c) 

Each iteration for (ß   satisfies these boundary conditions, so 

the boundary conditions for £ Q  are 

In the finite difference scheme the subscript ( lis identical 

to the subscript ( ) hence the first boundary condition provides 

&<Pt  = 
(4-18a) 

Applying the finite difference procedure to the second boundary 

condition and using Eq. (4-18a) gives 

where 

1 - 

<3x * 

5v a, J.J 
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Si (A,   it Uj 

Applying the finite difference procedure to the last boundary 

condition gives 

where 

Fw=  *   a^a, 

With 4 (p — o  known, there are N-l unknowns /\(D '       c = 1J .. .   N, 

Eq. (4-15) yields N-4 equations (one for each point £= J #4 fj-l). 

Eqs. (4-16), (4-18b), (4-18c) each yield one equation, so there are 

N-l equations. 

This system of equations can be rewritten in matrix form 



41 

where _ f\ J  is an (N-l) x (N-l) matrix consisting of the fa        , 

üt' He      AV  values, [_N   is an (N-l) x 1 matrix consisting 

of the hJi  values, and I A$T] is an  (N-l) x 1 matrix consisting of 

the unknown A Ql    values.  Eq. (4-19) is solved by a matrix factor- 

ization technique.  Details are given in Ref. 8.  Once (4-19) is sol- 

ved for A ty *   i new values of (Q     are calculated, and the pro- 

cedure is repeated until convergence is obtained. The convergence 

criteria is based on (Q^    for laminar flow and on (^ur    and & 

for turbulent flow. 

Once convergence is obtained the boundary layer properties at 

the station £*=• 5* are known.  The velocity profile is known from 

—• -ZL   £     =. cp' +.  j .  Other parameters (assuming £ = O ) follow 

from 

c - ^ - -± (4=/ -& ■f "    rut   " J%: K c /   /IF 

c /IF **- -^T,,^<*-«J (4-21) 

)H1 \   <p' ((p'-u)Jy (4-22) 

(^«? c^r O 
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£eQ = /°#e 9/^  = ^ew ^e* -f"      <*"*« 

In general the Integrals are evaluated numerically.  The value of 

r1 / 
*VJ     is the value of ^ for which f   - .995 ( Cf   - -.005). 

Boundary Layer Solution 

The solution begins at the stagnation point where the flow is 

laminar. A suitable ^h   grid for laminar flow is '>)    - 6 with 

^     - .025. A solution is then obtained for the stagnation point. 

Since j? =- O at the stagnation point, (4-14) shows that the ^ de- 

pendent terms drop out.  The solution is not completely self-starting 

however, since the (D  terms are required.  A good initial guess for 

<P   was found to be 

and 

Values of (f0      y0 
7 ; (D^1   are found by differentiation and in- 

tegration of (p* .    The iteration continues until convergence is ob- 
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tained (the stagnation point solution converges to the Falkner-Skan 

solution). With the stagnation point solution known, the first down- 

stream point ( <? — ? ) is calculated. Two point • formulas are 

used for this point, while three point formulas are used for all sub- 

sequent points.  For the first solution at a new downstream station, 

the solution for the previous station is used for (jJ0    ty      (f 

When a solution is obtained for a given point, the program continues 

to the next downstream point.  This is continued until separation or 

transition occurs.  Separation is determined by  (f^   —> O 

(i.e., "=TT /  —* O ). A variety of transition criteria could be 

used.  Those considered for this analysis are 

d\ <,  o 

Kes  = 32.0    for    S^L  > O 

and a criteria due to Gaster (Ref. 9). Gaster obtained a method for 

determining whether laminar separation results in complete separation 

or a short "laminar separation bubble" followed by a reattached tur- 

bulent boundary layer.  If the laminar boundary layer is approaching 

separation and Gaster's criteria for "short bubble" separation is 

satisfied, transition to turbulent flow is assumed. 

When transition occurs, the Oj  grid is redefined for turbulent 

flow.  Values of the laminar solution at the previous - station are 
j 

obtained at the turbulent grid points by interpolation.  The solution 
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for the first turbulent f station is obtained using two point ? 

formulas, while subsequent stations use three point formulas.  The 

turbulent solutions are obtained in the same manner as the laminar 

ones except that £ is finite and the convergence criteria also in- 

cludes 5"^.  After the first iteration (only) at a new downstcam 

location for turbulent flow, the old and new solutions are averaged. 

Cebeci, Smith found this necessary to obtain convergence. The tur- 

bulent calculations continue downstream until separation occurs. 

Turbulent separation is also determined by the condition (fi   -* O. 

In actual calculations, laminar or turbulent separation is de- 

mined when (£/   becomes zero or negative during an iteration.  This 

is both more reliable and more convenient than the procedure init- 

ially used (Ref. 3). This procedure cannot be used with the Caster 

criteria, however, since additional iterations or downstream calcul- 

ations cannot be performed.  Therefore, the Gaster criteria is used 

if the flow is laminar and (Q      ^ . i •  For a boundary layer that 

// 
is not near separation, typical values of 0 are > / . 
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5.  WALL JET ANALYSIS 

The turbulent wall jet properties are calculated using a finite 

difference method based on the Keller, Cebeci method (Ref. 14).  Two 

dimensional incompressible flow is assumed, and a typical wall jet 

development is sketched in Fig. 2.  Wall jet calculations are a rea- 

sonably straightforward application of boundary layer theory, but 

there are two difficulties.  The first is that, as with any turbulent 

flow, semi-empirical expressions are required to evaluate the Rey- 

nolds stresses.  Such expressions are available, but the amount of 

data available is quite limited in comparison to the case of conven- 

tional boundary layers, and the available data are not always in ag- 

reement with each other.  This situation leads to uncertainties in 

the shear stress model, but an apparently reasonable model can be 

formulated.  The second is that on circulation controlled airfoils, 

the wall jet develops in a region with a small surface radius of 

curvature.  Boundary layer theory can account for this, but the 

boundary layer approximations for streamline radii of curvature begin 

to break down over the latter portion of the jet as the jet thickens 

rapidly.  If this effect is not adequately accounted for, the wall 

pressure distribution, and therefore the separation prediction, will 

not be accurate.  An exact accounting for this effect is difficult 

since a required correction term contains second order streamwise de- 

rivatives, which do not fit into boundary layer theory. 

During development of the wall jet analysis, calculations were 

performed for a flow denoted as Kind's Flow II (Ref. 15).  This flow 
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was selected as a test case because measured wall jet profiles along 

with a measured boundary layer profile upstream of the blowing slot 

were available for it. The effective two dimensional angle of attack 

was also known.  This flow has a moderate momentum blowing coeffic- 

ient and a relatively small trailing edge radius of curvature, and 

should be a reasonable test case.  It was originally intended to per- 

form calculations for other flows also, including those of Ref. 11, 

but time did not permit this. 

Before developing the wall jet equations, the boundary condi- 

tions are presented since they are simpler but illustrate similar 

curvature effects.  The outer boundary conditions require that the 

jet flow match the existing external flow.  When the surface radius 

of curvature £ is small, the known potential flow surface values do 

not apply directly at the outer edge of the jet. The potential flow 

is unaffected by the jet according to boundary layer theory, so the 

following analysis yields the outer edge conditions. The irrota- 

tionality and continuity equations for incompressible two dimensional 

flow are, respectively 

ay ^ ~^7  '   5/ 

DLL      .  _2_ / TU / 
i «S-'er;-. JX       ay^ "It 

Integrating the irrotationality equation from the wall to the edge of 

the jet gives 
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*-«*-/ 15 ^ 7^   ^   ^c   J  ?X 
o 

where £/e is the known potential flow velocity at the surface and 

LIQ    is the desired outer edge velocity.  In the usual analysis, 

as in Ref. 16 for example, (f   terms are neglected since (f~  C 

at the wall and the region considered is thin.  In this case, the 

continuity equation is also neglected, and the outer edge velocity 

is 

^ a   x72 ** (5"1} 

Eq. (5-1) is the standard curvature correction and is accurate 

within a limited distance of the wall.  For large velocity gradients 

and relatively thick jets, [f   begins to become significant and Eq. 

(5-1) begins to become inaccurate.  A higher order term can be calcu- 

lated.  Using the irrotationality equation with ^— - o gives an 

expression for X    , which is used in the continuity equation to ob- 

tain an expression for if   .  This expression for if  is then used in 

the irrotationality equation to obtain a new expression for OL 

For K  ■ constant, the results of this analysis give the outer edge 

irrotational values as 

and 

 Bl eliU    n    JtA (5-3) 
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According to conventional order of magnitude estimates, both if^   and 

the second term In the brackets In Eq. (5-2) should be Insignificant. 

This is true for most of the jet region, but a combination of large 

   and increasing &    result in (H  eventually becoming compara- 
-/ > ß 

Jl/i 
ble to ilQ  .  The term  —}—£ in Eq. (5-2) is difficult to evaluate 

accurately since ü.^ is only known numerically.  It Is calculated by 

fitting a least - squares straight line to three points where ^"Tjf" 

<Vz#e 
is known and using the slope for  • , x . 

The pressure J?       at the outer edge of the jet is determined 

from 

*e- z—-4 (*£+%*) 

where ^     is the total pressure at the outer edge of the jet and 

jj^ and (j-      are known from Eqs. (5-2) and (5-3).  For irrota- 

tional flow, ~P is of course equal to the known free stream 

total pressure. However, the remains of the upstream boundary layer 

can result in a total pressure deficit, and this can be accounted for 

by allowing .2L      to vary from one streamline to another.  This 

variation is relatively minor, and will be discussed shortly. 

The above analysis is used for the outer edge conditions for 

wall jets without a velocity minimum, i.e., after the minimum has been 

essentially entrained.  Theoretically, it could also be used at the 

outer edge of jets with a velocity minimum, and this would be some- 

what simpler since 7\     would be equal to the free stream value. v "^ STAG H 

For typical circulation controlled airfoils, however, there are prac- 
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tical difficulties that suggest a different approach.  The difficul- 

ties arise because the upstream boundary layer is normally several 

times thicker than the blowing slot, which means that the curvature 

corrections would have to be applied much further from the wall. 

This would be no problem if the surface radius of curvature did not 

change abruptly. 

However, most circulation controlled airfoils have a discontin- 

uous radius of curvature at the blowing slot. Applying Eq. (5-1) or 

(5-2) at such a point would result in a sudden decrease in /L (by 

about 30Z for Kind's Flow II, for example). The radius of curvature 

could be faired in, but there is little information to suggest the 

proper fairing, so the result would be somewhat arbitrary. For this 

reason, and others discussed below, the following procedure is used. 

The initial wall jet calculations include the velocity minimum, 

and the outer edge conditions apply at a point corresponding to the 

outer edge of the upstream boundary layer.  The outer edge conditions 

are taken as the uncorrected potential flow surface values 

^- Ue      ,      ?e= 7e (5-5) 

To compensate for the lack of a curvature correction for the pressure, 

the normal pressure gradient in the wall jet equations is set equal to 

zero for the portion of the flow above the velocity minimum.  The nor- 

mal pressure gradient is actually set equal to zero slightly above 

the minimum instead of at the minimum, but the difference is not 

great.  Then for the initial wall jet development, the pressure at 
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the velocity minimum is essentially the potential flow surface pre- 

ssure /J  , and the velocity ^-MIKI *S determined during the wall 

jet solution.  The minimum velocity &C/niN  is zero at the slot, and 

the ratio Ccmitj   / increases as the jet procedes downstream. 

This ratio increases rapidly at first, and more slowly downstream. 

As the jet proceeds downstream, the point of minimum velocity moves 

further away from the wall. At each downstream location, the known 

value of ^/M/AJ *s compared to a velocity calculated by applying Eq. 

(5-2) at the location of the minimum velocity.  Initally ££MlhJ  is 

less than this velocity, but eventually the two values become approx- 

imately equal.  When the two velocities become approximately equal, 

wall jet calculations switch over to the case of a wall jet without 

a minimum velocity, i.e., the flow above the minimum is dropped from 

wall jet calculations. At the switching point, the known velocity 

profile for the portion of the jet above the minimum is used to tab- 

ulate streamline constants and their corresponding total pressures. 

These tabulated values are then used in Eq. (5-4) to determine "£nT+* 

for the downstream calculations. 

This procedure allows a smooth transition from profiles with a 

minimum velocity to those without, and allows the remains of the up- 

stream boundary layer to be accounted for approximately.  By the time 

the switch is made to profiles without a minimum, the velocity above 

the minimum is nearly constant and the shear stress is thus essen- 

tially zero. The total pressure is therefore nearly constant along 

a streamline, although it varies somewhat from one streamline to an- 

other. A more straightforward analysis would be to continue to per- 
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form wall jet calculations out to the lrrotatlonal flow, i.e., to the 

streamline corresponding to the outer edge of the upstream boundary 

layer.  This would require that calculations be performed out to a 

point further from the wall, and would not be difficult if  ■ j^. 

were sufficiently small.  However,   - ;   eventually becomes large 
d% 

enough for the boundary layer approximations for streamline radii of 

curvature to begin to break down.  As this occurs, uncertainties in 

the outer edge conditions and in the wall jet equations increase, 

and these uncertainties increase as the distance from the wall in- 

creases.  This effect is severe enough to justify calculating only 

as far from the wall as is necessary.  Therefore, the present proce- 

dure is adopted. 

Fortunately, the inner boundary conditions are simpler to use 

and to describe.  At the wall, the no slip condition and an imperm- 

eable surface result in 

6t ä a      if -  o      y-o        C5"6) 

The boundary layer equations for the time-mean values for two 

dimensional incompressible turbulent flow with a small surface radius 

of curvature are 

Continuity 

du. 
K    ?y + 

or                   3M. 
3* 

r-° 
" o 
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Momentum x 

/ 72. ~)il ?**. "-^   I   R  3f   2f    ^ 

or 

where £* zr -z^/3 — — \k*^T/&)- PWlj1^*  th* shear stress, 
As Q y     ' ** i 

Momentum y 

L  HI U'   . . 
dy       *.ty 

This form of the momentum y equation results from the customary 

boundary layer approximations, and is equivalent to assuming a stream- 

line radius of curvature equal to ( R+ y   ).  This is adequate over 

most of the jet region, but begins to break down over the latter por- 

tion where the jet thickens rapidly due to the strong adverse press- 

ure gradient.  Experimental results indicate that the pressure change 

across the jet tends to zero as separation is approached. However, 

the above equation predicts a finite pressure change across the jet. 

This means that if the pressure at the outer edge of the jet is corr- 

ect and the above equation is used, the pressure gradient at the wall 

will be too mild, which means that the predicted separation point 

will be too optimistic, i.e., too far downstream.  The effect on cal- 

culated results can be severe enough that separation is not predicted 

at all, even though upstream calculated values are in good agreement 
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with experiment.  It is necessary to obtain a more suitable form of 

the momentum y    equation. 

Observation of various calculated results indicates that the 

pressure change across the jet must be accurately predicted, but 

that the form of the momentum y equation used to do this is not 

particularly important.  In other words, the pressure distribution at 

the wall is much more important than the details of the streamline 

curvature.  However, in order to predict the wall pressure accurat- 

ely without resorting to experimental data for each case, it is 

necessary to consider the streamline curvature. 

The momentum y equation with all convection terms retained 

but all stress terms neglected is 

r Ty      yz.+ y + " 3y + z+y *• ?* 

According to boundary layer order of magnitude estimates, the last 

two terms are two orders of magnitude less than the first two terms. 

Also, some of the neglected stress terms are the same order of mag- 

nitude as the last two terms, so this form of the equation is not en- 

tirely consistent.  However, the effect that needs to be accounted 

for in calculations seems to be due to streamline curvature rather 

than additional stress terms, so the above equation should be an ad- 

equate starting point.  The (j~  TT— term could be included in exact 

form without difficulty.  However, including it but not the  - 

dir 
term results in a negligible improvement. The -—r  term is more 

difficult since it results in a second order streamwise derivative. 

It is not difficult to write a finite difference expression for the 



54 

second derivative, although the expression must be centered one grid 

point upstream, but the resulting calculations become unstable at an 

incredible rate. An exact curvature correction is therefore unten- 

able. 

The second order streamwise partial derivative can be reduced 

to ordinary second derivatives of profile parameters if an approxi- 

mate velocity profile is used, or if local similarity is assumed.  If 

an approximate velocity profile is used, the result would be equival- 

ent to that of Kind (Ref. 17), although the procedure is somewhat 

different.  However, in using this procedure in conjunction with an 

integral method, Kind (Ref. 18) found that stability problems result- 

ed as separation was approached, and the method had to be abandoned 

over the latter portion of the flow. A closely related but somewhat 

simpler method is to assume local similarity of the velocity profiles. 

This is equivalent to using an approximate velocity profile, but ig- 

noring some of the resulting terms. 

Including the -=-7  term in exact or quasi-exact form tends to 
0 A 

produce stability problems, while ignoring the term tends to produce 

an insignificant correction and therefore inaccurate wall pressure 

calculations. An approximate but plausible treatment of the term 

thus seems in order.  Examining Kind's measured velocity profiles, 

which seem reasonably typical, suggests a possibility.  For y ^. V/t^* 

■      has a large negative value, while for y ? y , 2Ü  may be 

positive or negative, but tends to have a much smaller magnitude.  It 

follows from the continuity equation that if  increases fairly rap- 
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idly from the wall to y     , then changes more slowly.  Therefore, (T^ 

should be a reasonably representative value for the outer portion of 

the jet, where most of the pressure change across the jet occurs. 

If so,  ■ I   should provide a reasonable average value of -=^ür   , and 

a workable form of the momentum y   equation should be obtainable. 

Using the definition 

along with Leibnitz's rule and the continuity equation gives 

Since the definition of 5 is not modified for curvature, the —?=p^ 

term should probably be set equal to one, but the difference tends 

to be minor.  From this, 

Dropping the second derivatives gives 

olif^K    _   _ Play**   Jyt ** 

Using this as an average value of JJC in the momentum y equation 

produced good results for a test run, but the procedure is not en- 

tirely satisfactory as it stands. The reason is that calculations 

can tend to ignore the term.  If U.   happens to be too large during 

an iteration,  ^H^is too small, and _'/**  tends to be too small ITT" ^T 
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also.  Thus the correction term tends to be too small.  If ÖLyw\    is 

too large, the pressure change across the Jet tends to be too large, 

and the correction term being too small tends to reinforce the pro- 

blem. 

dir** Including second derivatives would tend to give a larger _-fZ.  , 

but can cause stability problems and probably should be used only as 

a last resort.  At least part of the stability problem encountered 

with second derivatives was due to a convergence problem (described 

later) which tended to cause oscillations.  This problem was later 

corrected, but by then approaching deadlines did not permit re- 

evaluation of various procedures. 

The full momentum V    equation, with the aid of the continuity 

equation, can be written as 

T ly       zty L'- K-7>*{U/J      fry-° 

Dropping the t/~'     term and using an average value for ~"J7 ("77 ) 

gives 

where -f (yi)    - 2. |_ ~J>~ \~u /L  • As discussed above, there is s 

reasonable hope of finding a suitable expression for j (%)     based 

on average values.  Because of time limitations, a simple order of 

magnitude value determined from the potential flow values is used. 
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Using   -j£ -       «£  "öfx     gives 

.2. /if) -    - X 4H*e   4. JL (Me *■ 

An average value is taken as 

fj±. (J£)l       „       A   f JL ^«V 

which gives 

£A  f JL 4Ut.\l 
ä<> ~3F*J 

This approximate procedure at least allows useful calculations to be 

performed without the use of experimental data.  Also, as mentioned 

previously, the normal pressure gradient is set equal to zero above 

the velocity minimum.  This can be accomplished by setting -f —   j 

above the velocity minimum, and doing so does not result in any di- 

fficulty in the calculations. 

The continuity equation is Identically satisfied by introducing 

a stream function Y  defined by 
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For the vail jet, there is no particular advantage in introducing a 

transformation similar to that used for the boundary layer calcula- 

tions - Eq. (4-1).  The independent variables are therefore retained 

as (X y).  The dependent and independent variables are nondimensi- 

onalized and made of 0 (1) by use of the following definitions 

<t 

^ - €/K    j      <£  m 8lot thlckne88 (5_7) 

Velocities nondiraensionallzed by V^,, and lengths nondimension- 

alized by C , are denoted by an asterisk, such as /L = Ug /1/ and 

With these definitions, U* = ü£ 2E   }   (/*=, 0L ^ (L'*F) 

and the equations become 

Momentum x 

£ [ * ♦ (-??f t ] - *•*[% * 4 ffj$«w 

Momentum y 

(5-8) 

^       2.gL/--fcv] I(/.3F,I 
o*} r+'fy ,Je (Jy)   ~ ° (5"9) 
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The inner boundary conditions (5-6) become 

3? (5-10) 

The condition '.'"- O  at y = O results in the condition Ll* p - 

constant at ^ n 0  , and the first condition in Eq. (5-10) there- 

fore results by setting the constant equal to zero.  The outer 

boundary conditions are asymptotic but in practice are applied at a 

finite location y~ A   ( ">] - '*)&)  .  They become 

Eqa. (5-2) to (5-4) give 

For the case where Eq. (5-5) is used, the values are 

tle* = ^c ,  C*€ = C^ - /- &c* (5-13) 

If an eddy viscosity model is used, the shear stress is 
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or 

where 6 is the dimensionless eddy viscosity coefficient. As de- 

veloped shortly, an eddy viscosity model is used, but with a modifi- 

cation to allow the shear stress to be negative at the velocity max- 

imum.  The shear stress is therefore taken as 

where    is related to the mixing length.  In dimensionless form 

this becomes 

(5-14) 

Different eddy viscosity expressions are required for different 

portions of the wall jet profile. These expressions are developed 

below.  For some of the development, it is necessary, or at least con- 

venient, to know the approximate velocity profile shape, so this is 

considered first.  Sketches of profiles showing notation are given in 

Figs« 4 and 5.  One of the better integral methods for calculating 

wall jet development is that of Gartshore and Newman (Ref. 19), which 

is also used with modifications for curvature by Kind (Ref. 18).  The 

velocity profiles used in these analyses are 

\TJ       (y^y~; <5-i5a) 
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and 

(y^-Y^Ys)    <5-15b) 

where U^- Uj^ (Ac* Ur>~ Llg ^or profiles without a minimum velocity 

and U^ a ^^ for profiles with a minimum velocity. The constant 

^ - £M X •  The exponent /J    varies from about 1/11 to 1/2, with 

N - 1/2 typically taken as a separation criteria.  Eq. (5-15b) pre- 

dicts an asymptotic velocity decay, but experiment (Ref. 20) and 

calculated values when intermittency is included indicate that Ci— U^ 

at about (y~y^./) //0 — 2-'S •    The above expressions are used 

anytime approximate velocity profiles are required. 

The eddy viscosity in the region y >y V^is determined from 

Dvorak's model (Ref. 21).  The data used for this region are from 

profiles without a velocity minimum, but the results (excluding the 

intermittency profile) are assumed to apply for profiles with a min- 

imum also. Dvorak's model is based on measurements by Wygnanski and 

Fiedler for a variety of turbulent shear flows.  An eddy Reynolds 

number J^e  is defined as in Eq. (5-16) and found to have a constant 

value of about 15. 

LUJ: (5_16) 

In general, Jji   is a velocity deficit and U~  is the standard dev- 

iation of the intermittency profile, and thus is a measure of the 

size of the large eddies (Ref. 22).  For a wall jet, /^ = ^ £/ is 

known, and if a suitable expression for q~   is available Eq. (5-16) 
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provides an eddy viscosity model. Dvorak gives results for tr based 

on data by Gartshore, but as discussed below the results do not seem 

to be general since they essentially prescribe a wall jet thickness 

that is not always in agreement with experiment.  The reference 

Dvorak cites (Gartshore1s dissertation) was not available to the 

author, but another paper by Gartshore (Ref. 22) contains apparently 

the same data.  In Ref. 22, Gartshore uses measured intermittency 

profiles for a wall jet in still air and three wall jet flows in 

specialized pressure gradients for which self-similar solutions exist 

to provide an experimental verification of Townsend's large eddy eq- 

uilibrium hypothesis (Ref. 23).  The data in Ref. 22 can also be 

used to check Eq. (5-16), and the results are in good agreement, giv- 

ing a value of "£L that varies between 14.5 and 17. The data for <J~ 

can be put into different forms, and the method used here is to de- 

termine ti~/jLoas a function of 6(g / [\j   . The following curves are 

used to do this 

iC . .„, (A ,  3.o.0 

£ = . »3 *. AW ( % - l.l)        <!.!<■%< " -)   «-"» 

£- •«/( % -.«)(•% -».0- UN \ (%-,.,) 

The mean location of the intermittency profile y  is also determined 
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by curve fitting the data of Ref. 22 to obtain 

1= £♦*«• (%-«X^- <•')-•" M-'O ■"T""ll- 
.. (5-18c) 

For a given velocity profile, U^ , /J^ and /_o are known.  Eq. 

(5-17) then provides CT and Eq. (5-16) then provides 6^ .  The 

value of y   is determined from Eq. (5-18).  The value of <£M is 

multiplied by a curvature correction /^described later.  For a wall 

jet profile without a velocity minimum,  the eddy viscosity for /^)L^ 

is taken as 

^t= Kce
+

M y (5-i9) 
■w 

where 

is the intermittency function. 

For a profile with a minimum velocity, the eddy viscosity dis- 

tribution for V 7, y   is taken as follows. 

e+=^c^     (Zm 4 Y ± Y»i +1-)       (5-21) 
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€t=€L'X (r*ym + t-*U)        (5-22) 

where     y =■  . q &   ,   V~=*/Z7 A  and    y   is given by Eq.   (5-20) 

€* = ^L0
f C£i»i4t7 SU.) * <5-23) 

The value in Eq. (5-21) is the same as in Eq. (5-19) except that the 

intermittency function is excluded. Values for Eq. (5-21) are de- 

termined the same as for Eq. (5-19).  The region in which each of the 

above expressions is used is somewhat arbitrary but seems reasonable. 

Eq. (5-15b) shows that the maximum negative shear stress occurs at 

about Y/^.iSL0
3°  tne region for Eq. (5-21) extends somewhat above 

that point.  This allows a smooth switch to profiles without a min- 

imum.  The region in which Eq. (5-22) is used corresponds approxima- 

tely with the portion of the flow above the velocity minimum.  In Eq. 

(5-22), €UBL     Is the maximum value in the upstream boundary layer 

at the slot, and is known from the known boundary layer properties. 

The approximate values for y    and tf~ in Eq. (5-22) are given by 

Dvorak as asymptotic values for a boundary layer with a large shape 

factor.  They also give reasonable agreement with the intermittency 

distribution used in the upstream boundary layer calculations.  Eq. 

(5-23) is an arbitrary fairing to connect the other two expressions. 
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For wall jets on convex surfaces, the radial gradient of momen- 

tum in the outer region is negative, and this tends to produce addi- 

tional turbulence in the outer region. The curvature correction jtc 

is used to account for this.  Kind (Ref. 18) derives a curvature 

correction based on data for the growth of a curved wall jet in 

still air.  Kind uses the Gartshore and Newman (Ref. 19) expression 

for eddy viscosity, which is essentially the same as Eq. (5-16) ex- 

cept that "J5-, is determined as the sum of two terms.  Kind corrects 

both terms for curvature, and an identical procedure does not apply 

with Eq. (5-16).  However, the major portion of this correction is 

retained by taking 

2. 

Kc = {> t.HQ  VzlhL - i.zi ( y^±:)z ]  ■ 

[/,A3Y(^fJ^[H-3^] 
(5-24) 

This correction can be quite significant since it can easily increase 

the eddy viscosity by a factor of two or more. 

Eqs. (5-17) and (5-18) are used in place of those given by 

Dvorak since Dvorak's expressions, when used with Eq. (5-20), result 

in the eddy viscosity becoming zero at about the middle of Kind's 

measured wall jet profiles.  A similar difficulty also arises for 

Jones' measured measured profiles (Ref. 24). This apparently is 

related to the fact that experiments often show different wall jet 

growth rates, especially near the blowing slot.  Use of Eqs. (5-17) 

and (5-18) allows the jet thickness to be determined during the cal- 
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dilations, and calculated results indicate that the thickness of the 

outer portion of the jet is essentially determined by the maximum 

value of the eddy viscosity. As would be expected, increasing the 

eddy viscosity increases the thickness of the jet.  Dvorak uses a 

diffusion equation to allow the actual eddy viscosity to lag behind 

£*J      , and this procedure was used initially. However, for 

Kind's Flow II, this procedure seemed to limit the eddy viscosity 

to too small a value, while use of £*    resulted in good agreement 

with experiment.  Therefore, the local value  C^\ is used in the 

calculations. 

The inner region (/^Y   ) of a wall jet profile resembles a 

conventional turbulent boundary layer, and the conventional eddy vis- 

cosity model for a boundary layer thus seems to be a reasonable start- 

ing point for the wall jet formulation.  In general, however, such a 

model will not match the eddy viscosity in the outer region without 

the aid of a somewhat arbitrary fairing.  The conventional boundary 

layer model near the wall is 

where 

A> = 
Kx-u 

fW 
while away from the wall the conventional model is 

Ym 
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The matching condition for the two expressions is that the eddy vis- 

cosity be continuous.  Common values for the constants are fc  — #/y , 

K«z   . C /&$      and K3- 2£*    For low Reynolds numbers, Cebeci 

(Refs. 25 and 26) recommends the values 

K. -   -Ho  +     '-!l  (5_27) 

V     ~     16,   i-      — 5  <5_28> 

.p/6 8 (i.rs) (5_29) 

where       TP - .sT^i-jtyLf-.xnJfc-,' -.i»(fe-'|| 

Eqs.   (5-27)  and   (5-28)  apply for   ~%4>^ 3oo , while Eq.   (5-29) 

applies for H& ^ VZ4", where 

o 

The above values are used here, and if  ^<s^ *s less than the 

given limiting values the expressions are evaluated for the limiting 

values.  The — term in the expression for Ao  is evaluated in terms 

of S^ and the pressure gradient by the usual procedure. Near the 
f 

wall the convective terms are neglected, and the momentum A eq- 

uation is 
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\(?)    raS7, U<*tf ff 

Evaluating the pressure gradient at the vail and Integrating gives 

This expression could be used as is, but for conventional boundary 

layers Cebeci (Ref. 28) recommends evaluating it at 

_   /!•$ V (5-30a) 

The expression was used with y as a variable and also with y ev- 

aluated at various fixed locations, and the difference in the solu- 

tion was insignificant.  The form used gives 

A. = Kaf  2^ [7* ♦*<&#<*♦*>]*     «"*' 
were y^   is given by Eq. (5-30a).  For a convex radius of curvature, 

both the inner and outer eddy viscosity expressions can be corrected 

by multiplying by 5 , where (Ref. 27) 

>**     \ (5-31) 

Gartshore and Newman (Ref. 19) use a correction to the outer eddy 

viscosity to allow for the turbulence in the outer portion of the 

wall jet.  This correction is equivalent to multiplying Eq. (5-26) 
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by the  factor      /      , where 

-( 
s ro/i /s~t3r<s      *«■ * 1 (5-32) 

Gartshore and Newman use this expression in conjunction with an in- 

tegral method to determine the shear stress at V = T )/w > anc* now 

it applies in the present formulation should probably depend on 

where the fairing to join the outer region begins. 

The eddy viscosity distribution is taken as follows. Near the 

wall, Eqs. (5-25, 27, 28, 30) are used to evaluate £~+. . This ex- 

pression is used until ^t« ■ £0 , where 6^ is determined from Eqs. 

(5-26, 29). Matching occurs at about y—.Z)/^. From the matching 

point to y/m , the eddy viscosity is determined from the somewhat 

arbitrary fairing 

€+ = €t + K*e'tn-€i r        1/y-.64-y~,\7     0-33) 
*- ~/~ 

A typical eddy viscosity distribution as determined by the 

above procedure is shown in Fig. 4, and is drawn to scale for one of 

the calculated velocity profiles. A lack of detailed information for 

the inner region along with the difference in magnitude between €* 

and  ^c6^  leads to some uncertainty in the formulation. 

Several variations for Cf »  £^~ Bn^  tne fairing were used during 

development of the analysis.  These variations were made while att- 

empting to sort out development difficulties that were related to a 

convergence anomaly and, eventually, the inaccurate pressure gradient 
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over the latter portion of the jet.  Most of the variations were 

made before these difficulties were sorted out, so conclusions con- 

cerning them are somewhat tentative, but are probably reasonable. 

The expressions used for ^t    and the fairing seem to have only a 

minor effect on calculated velocity profiles. The value of 6* can 

have more of an effect, and its streamwise variation is of signifi- 

cance.  If 6* increases too slowly in the streamwise direction, the 

velocity gradient near the wall tends to remain too high.  Since the 

value of €*  is of some significance, a fairing that allows the eddy 

viscosity to remain essentially equal to £* for a short distance 

seems appropriate.  Otherwise, the value of 6* may be effectively 

lost since the calculations may fail to distinguish where the ^ • 

expression stops and the fairing begins. 

Eq. (5-31) was included in the formulation at one time, but ten- 

ded to reinforce an oscillation that was occurring in the solution, 

and was therefore dropped.  The oscillation was later eliminated, 

but use of Eq. (5-31) was not reconsidered.  For the fairing used, 

the value of £f at / = \ y^ depends on 6* and Kc €^\ • '^ie  value 

of 6 is increasing very rapidly with y   for this portion of the 

profile, and the value at y=-7/^*8 in reasonable agreement with 

Eq. (5-32). 

Turbulent wall jets typically have a negative shear stress at 

/ - V/Wv   .  The explanation for this is that the turbulence from 

the outer region can spill over into the inner region, and vice 

versa, but the large eddies in the outer region tend to dominate the 
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flow at y -  V  .  Gartshore and Newman (Ref. 19) use the empirical 

expression 

for the magnitude of T  at y ^ y^ .  Kind (Ref. 18) uses the same 

expression but with a modification for curvature.  According to the 

above expression, ^V^is of the order of 20Z of the maximum negative 

shear stress in the outer region, and thus can have a magnitude com- 

parable to or greater than the wall shear stress.  Gartshore and 

Newman found that using £v z o in their integral method resulted 

in /  being too small, i.e., the velocity maximum remaining too 

close to the wall, and a similar result was obtained in the present 

method using a conventional eddy viscosity model.  A method to allow 

£*//wx to be negative was therefore devised. 

Following the usual mixing length analysis (Ref. 29), but re- 

taining second derivatives in the Taylor series and applying the 

analysis near the velocity maximum gives 

/*'/ ■  IT /ly* I 

where J£   is the mixing length.  By analogy with usual mixing length 

procedure, the shear stress is taken as 

p e    i    dy1- 
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This result only applies near the velocity maximum and It is not de- 

sirable to retain the second derivative, so the approximate velocity 

profiles given by Eq. (5-15) are used to evaluate the term.  From 

Eq. (5-15b) assuming a profile without a minimum velocity 

 Xh [/-*u^r] <*-«.> 
where 2b m11n2  * 1.387.  Using the mixing length expression 

-P6+ = J?\^j\     Eq. (5-16) for V€+  , the above expression for ^ 

evaluated at y= /^ftL0 >  and T —   , YZ-o as typical values gives 

jg Cz?  , XLo •  Therefore, the shear stress correction term is 

taken as 

This yields £*_. - *Z ¥       > which is in reasonable agreement with 

experiment.  The maximum negative shear stress is unchanged by the 

above term since the term vanishes at about   X^+ »^f La* 

Use of Eq. (5-15a) gives 

DCC    _  VUj*»   /J_    \A/-I        A/6C  //*•»% 
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Neither of these expressions match the outer expressions at / - y^ 

~D2£L 
Also, the form is different, and  -^777  does not become zero at a 

*y 
convenient point as it does for the outer portion. The result for 

is therefore used as a guide, but is altered so that it 

matches the outer expression to give 

y 2. 
the /  -) term is replaced by a linear fairing from the wall to the 

somewhat arbitrarily selected point / = * 6y .    Reasonable variations 

in this matching point have little effect on calculated results.  Re- 

sults of the above analysis are added to the conventional eddy vis- 

cosity model, giving Eq. (5-14), where 

t-        '^    (Iff (■<%.* 1*1~)       (5-34b) 

r=  ^l,-L3S7 (l^f] (5-34c) 

£* =     O    (y>  J^.SS^) (5-3Ad) 

Eq. (5-14) along with Eq. (5-34) is used for profiles with or without 

a minimum velocity.  No direct modification is made for curvature. 

The equations are solved by a finite difference method based on 

the Keller, Cebeci method (Ref. 14).  This method applies to a system 
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of first order differential equations, and the present equations are 

rewritten as such a system by defining 

G * 2£ (5-35) 

With these definitions, Eqs. (5-8, 9, 10, 11, 14) become 

Momentum x 

•LH--faß-X*«-)]}'* 
Momentum y 

uy        7T^        ^ <S   - ö (5_38) 

Inner Boundary Conditions 

F = O ; Ö = O   At  -fc n o (5-39) 

Outer Boundary Conditions 

6 * '  , C* * C».     a*  y = y, (5-40) 
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The finite difference procedure applies to the arbitrary grid 

Values at a grid point / ? ^J.) are denoted as f.    , and the nota- 

tion 

is used for averages of grid points. Averages are taken as 

fy     - T^J +$   ' ,   £*- *(£ *£,) 

The finite difference procedure uses first order centered dif- 

ference formulas for derivatives, and average values for algebraic 

terms.  Such a procedure is inherently stable in the sense that no 

extraneous solutions to the difference equations can be present and 

grow as calculations proceed downstream.  Other types of instabilit- 

ies are possible, but can be avoided.  Streamwise derivatives are 

taken as 

DW 

w - (*&- «Ä > /& 
An equivalent expression for normal derivatives is 
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Because of the form of the equations, some simplification without 

loss of accuracy results by taking 

Eqs. (5-35, 36) are taken as 

This is the form used by Keller, Cebeci.  It results in no loss of 

accuracy since satisfying the above equations at each ? also re- 
-2 AN 

suits in averages at ? %.   being satisfied.  Eq. (5-38) is taken as 

This equation could also be written for ?  ..   instead of f4 , 

and initially it was.  The difference in the solution was insignifi- 

cant, so the simpler form above is used.  Eq. (5-37) is taken as 
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In the above form, the shear stress term is the only '^  derivative, 

and is treated in the form 

If- (<-■£)/# 
Because of the other terms in the equation, it would seem better to 

treat it in the form 

as Keller, Cebeci do.  However, the second form results in a dif- 

ficulty if the calculations begin at the slot, as they do in the 

present solution.  As discussed later, the initial wall jet profile 

is taken as a fully developed slot profile plus the known upstream 

boundary layer profile.  For fully developed slot flow, the shear 
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stress decreases linearly from the wall and Its slope depends on the 

pressure gradient in the slot.  The wall jet adapts to the external 

pressure gradient, which in general is much different than that in 

the slot, so the shear stress gradient near the wall is considerably 

different for the first downstream point. Use of the second finite 

difference form therefore results in drastic oscillations as the cal- 

culations try to make the average shear stress gradient correct. 

The first form avoids this difficulty.  It would be possible to 

switch from the first to the second form at some point downstream of 

the slot.  At one time this was done, but it resulted in an insigni- 

ficant difference, so the first form is retained throughout for 

simplicity. 

In the calculations, a solution is known at a station f    , 

and the equations are used to find the solution at F^  . Use of the 

finite difference expressions results in the above system of non- 

linear algebraic equations. An iterative procedure is required to 

solve these equations, and the Keller, Cebeci procedure is used.  The 

— U) superscript /y\   is dropped, and the t  H iteration is denoted as /-  . 

Also, f-'.     - Pt     -h£r,    with similar expressions for the other 
/      1 0r7 

variables. The § p/° is a perturbation term which is solved for in 

each iteration.  Substituting the above expressions into the finite 

difference equations and neglecting products of perturbation terms. 

From Eq. (5-35) 
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where Q, ■=.     -   f,     -t   f>        +   V •   L   , 

From Eq.   (5-36) 

From Eq.   (5-38) 

where 

t 

'''> - _c';' 4 o*>     p   *-1~U~&> *£* r»«> i1 

From Eq.   (5-37) 

Yf-   h/y-      -i- JT.   6 6/     + &/  i>H/    +*/   *%■ (5-44) 

where 

vw_  _  */'    u** 'in*- Vu('>   +     ?"       r0:  1 
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• [ < ^ - c <&: lh < <? t -fa. * *f) 

v   ft) _/. £/ 
y 

+ *** W--fa-«r* - *f l<?-fi 
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Eq. (5-44) neglects terms resulting from <b 6  since there is no 

simple way to handle such terms. Keller, Cebeci also neglected such 

terms and found that doing so did not damage convergence. 

The boundary conditions (5-39) and (5-40) are enforced for each 

iteration.  Since ^ = O , Eq. (5-39) results in 

S Ft        =- o (5-45a) 

bGi      -    O (5-45b) 

The thickness of the jet at a station ^ is determined during the 

solution. A basic grid is selcted, and the outer point ^T in the 

grid should be far enough from the wall to allow for the maximum jet 

thickness that will be encountered. Over much of the jet region, the 

jet will be much thinner than this, so the entire grid is not used in 

all calculations. The outer boundary conditions are handled as 

follows. A grid point X_ ^ J" > corresponding approximately to 

<yi       —    /,2_ '
Y

]A , is selected as the outer point.  Eq. (5-12) 

or (5-13) is applied to obtain U* and O^ at J7    . Eq. (5-40) is 

enforced at 1/j    for each iteration, and this gives 

$ Srrv s   & (5-46a) 

SCZj.    ~     ° (5-46b) 

The actual thickness ^L   of the jet may be less than %- 
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The system of equations is solved by a matrix factorization pro- 

cedure analogous to that used by Keller, Cebeci. The equations are 

written in a particular order and then considered in groups of four 

to obtain the desired form.  The first group consists of Eqs. (5-45a) 

(5-45b), (5-44) for j - 2, and (5-43) for j - 2, in that order. 

The second group (in order) consists of Eqs. (5-41) for j * 2t 

(5-42) for j - 2, (5-44) for j - 3, and (5-43) for j - 3. 

Subsequent groups, except for the last group, are analogous to the 

second group, but with j  increased by one for each group.  The 

last group (in order) consists of Eqs. (5-41) for j = J_, (5-42) 

for j - Jr, (5-46a), and (5-46b).  This system of equations in 

matrix form is then 

[«"'j [£"'']=   0"'J 
where 

[«<"] = 

JcJ 

£ 
a) 

a> j>>] = 
. 

9, 

U) 

(O 

(() £ « 

<c) 

L ,Jf j 
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The system f (J\      I / S "IT Jcan De solved efficiently 

by matrix factorization, and this is the procedure used by Keller, 

Cebeci. It [fl*]. [£»][>*] 

where 

1 ■ 

V 0) 

-B? D^ 

K0)       T\U) 

a 

-gtfi -p CO 
V 

fc') -TN CO 

E « 

i f. 
f/i 

.<«) 

r«<*j= 
<■<) 

/   ^-2 

I 
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where fiM vu> =    A. 

-.&      /\"'J      -©^ r-'*5 ,.„_-» 

_fc'J r_fö 7-/      .-fcl v 

The (</Xty)  matrices f\> "3 •    C'    have been given pre- 

viously, and the C^K*/)   matrices    "£). and   £f »    can be 

calculated sequentially from them as shown above. The matrix j "0- 

is the inverse matrix of  ~D •  . The matrix inversion is performed 

using a standard matrix factorization technique (Ref. 30).  It is 

if 
ed in the order used to accomplish this. 

necessary that f\ be nonsingular, and the equations were arrang- 

With   X. a*d    ^ (J known, the matrix equation can 

be written as 

[r'][z"-']-[r1] 
and solved for [ f 0i ]  where [ Z U> J = \U °'1 ] £ S""'] 
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With 

0*>> 
z 

fo 

u\ 

a) 

where 

< 

the solution is 

*/' 

L   A'    J 

(O 1~'       ,T '<4 

With 

gf>   =     [-D,->J'   9, 

i? known, 6~     J is found  from 

The solution is 
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With ^ b  J known, new values ^ rj    }  Gy ,   n •        Lj? >     ) 

are determined, and the procedure is repeated until convergence oc- 

curs.  When convergence occurs, the solution for  J"^ is known, and 

calculations proceed to J^^ ; .  Convergence criteria are taken as 

b hi.      and S C^  becoming less than some prescribed tolerance. 

This is equivalent to the velocity gradient at the wall and the in- 

tegral of the velocity profile squared not changing significantly 

for the c -tk  iteration. 

Separation is determined by the calculated value of /V be- 

coming zero or negative.  For the initial guess for the velocity 

profile at a station £    /-/    (i.e., )4) is positive.  Subse- 

quent iterations give //'   = U   *"    f J/// until convergence 

occurs or H ^.Q.       If H,        ^ O   , iterations terminate and sep- 

aration is assumed to have occurred. 

Wall jet calculations begin at the blowing slot. A velocity 

profile for the flow in the slot is assumed, and the boundary layer 

profile above the slot is known from the upstream boundary layer 

calculations.  The flow in the slot is assumed to be a fully devel- 

oped incompressible channel flow.  For such a flow (Ref. 31) 

dt _     a£ 
^7 -   77     = constant 

Assuming symmetry about the slot centerline, this gives 

xy 
**- **, ('" ~t) (5-47) 
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where  (£   ■ slot thickness.  For laminar flow, £*= ff* -~jy     > 

and the velocity profile corresponding to Eq. (5-47) is 

<*= ZTTP y (/- t-) 

If a suitable eddy viscosity distribution is known for turbulent 

flow, a similar procedure can be used to obtain 

The eddy viscosity model developed by Mei and Squire (Refs. 32, 33) 

gives 

S 

€+ = 

where 

This expression along with Eq. (5-47) gives \JjQ 

// ^° 
//=   777?  0-*7) <5"48> 

where ^ 

/+e+~tt        'y ^2*-^^ ^ 
[ (</*7?(fctf£ji7**.3Z'/J[/^.S7] 
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Integrating Eq. (5-48) gives G and F.  All terms in Eq. (5-48) are 

known except (4*  , which must be prescribed.  Prescribing tip thus 

prescribes the blowing slot values.  Eq. (5-48) can be integrated in 

closed form (Refs. 32, 33) but for the present purpose it is more 

convenient to do the integration numerically.  Either a turbulent 

slot flow or a laminar slot flow can be prescribed.  For the laminar 

case, the eddy viscosity is set equal to zero.  For all calculations 

performed so far, a turbulent slot flow has been assumed. 

Blowing slot values are normally given in terms of a momentum 

coefficient dn   and a mass flow coefficient 0. Ji*      » where 

(5-49) 

_   ti«*       €*u* P; F (5-50, 

In Eqs. (5-49,50) f*»  is the density of the flow in the slot.  Since 

the wall jet analysis is for incompressible flow, it is assumed that 

P '-=. p .  Eq. (5-49) is the appropriate form for the case where the 

velocity in the slot is not uniform.  For most cases, however, ex- 

perimental values of Cy.  are based on an average velocity.  An av- 

erage velocity U^^  for the slot is 

o 

Defining a momentum coefficient C  ,    in terms of the average 
s*< Auf 

velocity gives 
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The values predicted by Eqs. (5-49) and (5-51) are reasonably close 

but not Identical.  For Kind's Flow II, assuming a turbulent slot 

flow, the value of C,,  is about 102 higher than £ ,. 
>**• >*-< Ave 

With c/£  for the slot prescribed, the velocity profile and thus 

C^ and C'  are known.  The upstream boundary layer profile is 

also known, but in terms of a different coordinate system.  Letting 

the subscript ( )„. denote quantities in the upstream boundary 

layer coordinates (evaluated at the slot), the values In the wall 

jet coordinates become 

G =   rL <5"52b> 

H   ~ ,     _    i fBiL (5-52c) if^nr 

7= _i5k— * (5-52d) 

c.«  ,-a}1 (5-"*' 
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Neither the upstream boundary layer calculations nor the slot flow 

analysis include normal pressure gradients, so the initial pressure 

distribution is taken as Op = /- CL*     •  For the form used for 

the finite difference expressions, this does not cause any difficulty, 

and neither does the fact that /-/ is discontinuous at ^1 s / . 

Large gradients are associated with the sharp velocity minimum 

at the slot, so a finer grid is necessary near the slot.  From re- 

sults presented by Keller, Cebeci (Ref. 14), 40 ^ grid points seemed 

a reasonable number for a conventional boundary layer profile.  The 

shape of the initial wall jet profile requires tripling this number, 

so a maximum of 121 ^ grid points was selected.  The 4; grid for 

the initial calculations is taken as follows.  For the region Ot^ft^ 

the Ceboci, Smith grid ft '  =■ It hj-t    is used, but the value of K 

is altered occasionally.  For ~ £ ^j  <=. (   , the grid is a mirror im- 

age of the grid for y b -sr .  Selected points in the upstream boundary 

layer grid are used for the remaining wall jet grid points.  The 

first streamwise step size is taken as 1/3 of the slot thickness, 

and the second step size is taken as 1 slot thickness.  After the 

solution is obtained at this location, the grid is altered to a more 

suitable one for downstream calculations.  The Cebeci, Smith grid 

#.= £/?*    is used, again with l/C   altered occasionally. The 

streamwise step size can be varied as desired, but unless output at 

specific points is desired the step size is taken as follows. A max- 

imum step size (such as 5 slot thicknesses) is prescribed.  This is 

taken as the step size unless it results in Cl^  changing by more than 

.1 between successive locations.  If Ug,  changes by more than .1, the 
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step size is reduced so as to make the change in (AQ  approximately 

.1. However, the step size is not reduced to less than half the pre- 

scribed maximum value. The values of K were selected on a trial 

and error basis, and general recommendations on how to pick values 

would require additional study.  Calculations were performed with 

different grid parameters to insure that the grid used is adequate 

for the present calculations. 

The grid used for the wall jet calculations is quite coarse 

compared to that used for the boundary layer calculations.  Prelim- 

inary calculations indicate that an even coarser grid would be ac- 

ceptable, although oscillations in the solution very near the wall 

can result if the 1t    grid is too coarse near the wall.  Convergence 

of the finite difference method was found to be fast and reliable. 

However, a convergence anomaly existed during much of the develop- 

ment, and its presence was not directly obvious.  The initial guess 

for the velocity profile at a new downstream location is taken as 

the solution from the previous location, and this seems to be satis- 

factory. However, unless some precaution is used, this can result in 

the initial guess for £0   — from Eq. (5-26) — being too small while 

£*  — from Eq. (5-25) — increases too rapidly.  This results in 

a qualitatively poor initial eddy viscosity distribution, and subse- 

quent iterations do not seem to be able to compensate even though 

convergence appears to be normal.  Providing a qualitatively reason- 

able initial eddy viscosity distribution eliminates the problem, and 

the final solution is not sensitive to the initial guess used. 
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Summary Of Wall Jet Calculations 

Wall jet calculations begin at the bloving slot, A value of 

It 
U?    f°r the slot is assumed, and the velocity profile for the slot 

is determined from Eq. (5-48). The rest of the initial velocity pro- 

file is determined from the known upstream boundary layer profile and 

is given by Eq. (5-52). The slot location is denoted as ^  • The 

solution proceeds downstream from the slot. The solution at ^ and 

j  is determined using a finite difference grid appropriate to a 

velocity profile with a sharp minimum. After the solution at J is 

obtained, the grid is altered to a form more appropriate for down- 

stream calculations, and the solution at the new grid points is ob- 

tained by interpolation. The solution then proceeds downstream. The 

initial wall jet calculations are for a profile with a relative min- 

imum velocity.  For such a profile, the outer edge conditions (at a 

point corresponding to the outer edge of the upstream boundary layer) 

are determined from Eq. (5-13). To compensate for the lack of a cur- 

vature correction for Eq. (5-13), the normal pressure gradient in the 

wall jet equations is set equal to zero above the velocity minimum. 

The eddy viscosity distribution is determined from Eqs. (5-25, 26, 

33, 21, 22, 23). 

Calculations retain the minimum velocity until they can switch 

smoothly to a profile without a minimum.  For profiles without a vel- 

ocity minimum, the outer edge conditions are determined from Eq. 

(5-12). The eddy viscosity distribution is determined from Eqs. 

(5-25, 26, 33, 19, 20). Calculations proceed downstream until sep- 
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aratlon Is determined by the vail shear stress becoming zero or neg- 

ative. 

For all wall jet calculations, the outer boundary conditions 

are applied at a grid point corresponding approximately to l*L *j &M„t 

The actual jet thickness is determined during the solution and may 

be less than /."2L y^      . The solution for  7 > Tg-   is taken as 

F =.   p     * («l~«\j€) } <3=7 > H = 0, <iz^e  i^tial guess for </r^ //) 

at a station  fr^ is taken as the corresponding values at V'<Al./ • 

The initial guess for  CjJ  is taken as Cj  * A Cp where 4 Cp 

is determined so as to give the correct outer edge pressure.  After 

the first iteration (only) at a station J   , the old and new solu- 

tions are averaged.  This did not seem to be necessary, but helped 

reduce over-shooting of the next iteration. A reasonable eddy vis- 

cosity distribution is provided for the first iteration. 

An iterative procedure is required to determine the correct blow- 

ing slot values.  Such a procedure should not be difficult to set up, 

but at present calculations are simply performed for a given number 

of assumed slot conditions. 
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6.  RESULTS 

Calculations are performed for Kind's Flow II (Refs. A, 5, 15). 

Briefly, Kind's airfoil is a 20% thick ellipse with the trailing 

edge replaced by a circular section with a radius of 9/16 inches. 

The chord length is 14 5/8 inches, and the blowing slot is located 

at the location where the modified trailing edge joins the airfoil. 

Kind performed downwash corrections by comparing calculated and mea- 

sured pressure distributions and estimates the accuracy of the re- 

sulting effective two dimensional angle of attack as + 1/2 .  Kind's 

experimental values for Flow II are ^<2o© ■ 750000, oi   - -0.7 , 

CJL      « 1.82, C^m  ,055, <?*« .0012, £*» .0378. 

Using this Input, calculations are performed as described pre- 

viously.  Results of the wall jet calculations are given for two 

different sets of blowing slot conditions in order to illustrate the 

effects of the assumed slot conditions.  Results of the present cal- 

culations are shown in Figs. 6 through 15 and are discussed below. 

Fig. 6 shows the calculated potential flow surface pressure dis- 

tribution.  Unfortunately, Kind does not give the measured distribu- 

tion for Flow II, so a comparison is impossible.  The same potential 

flow program used here has been used in other applications, such as 

in Ref. 3, where calculated values were found to be in good agreement 

with experiment for a cambered ellipse with a modified trailing edge. 

Fig. 7 shows calculated and measured boundary layer profiles up- 

stream of the blowing slot, and the agreement is good.  The measured 

profile is .055C upstream of the slot, while the calculated profile 
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is .007C upstream and is the profile used for the wall jet calcula- 

tions. The difference in location could cause some difference in 

the profiles, but there seems to be little upstream influence of the 

blowing slot for this flow (Potential flow calculations give a 

at the slot of about -2.3, while Kind's measured values give about 

-2.5 at the slot exit). Other potential sources of difference are 

the relatively low Reynolds number and the fact that Kind used two 

trip wires on both the upper and lower surfaces of the airfoil.  As 

mentioned previously,  the boundary layer eddy viscosity expressions 

were not updated by the newer expressions for low Reynolds number. 

In calculations, transition was assumed at the first trip wire, and 

the second wire was ignored. 

Fig. 8 shows calculated and measured velocities at the outer 

edge of the wall jet, along with the calculated potential flow 

velocity.  Calculated values shown are for C^ ■ .054, but values 

f°r /U. * -046 are virtually the same.  Calculations include a vel- 

ocity minimum up to J~ J SLOT*  -Oil, and the dashed line indicates 

the calculated value of ^C^[f0    •  Calculated values are in excellent 

agreement with experiment up to about j- ^SLOT m  «°5, and then de- 

crease in agreement, but are still useable.  The discrepancy begins 

at about the same place where the normal velocity becomes comparable 

to the streamwise velocity, and other difficulties in the wall jet 

calculations begin at about the same location.  Eqs. (5-1) and (5-2) 

give virtually the same result up to   3 - ^jioT  ■ .05, with Eq. 

(5-2) giving some improvement downstream.  The discrepancy in the 
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outer edge velocity forces some discrepancy in calculated velocity 

profiles (G) also.  Fortunately, however, it seems that the effects 

on the velocity ( ü£ G>      ) in the inner portion of the jet are not 

great.  This is discussed later. 

Fig. 9 shows calculated and measured pressure distributions in 

the wall jet region.  The experimental outer edge pressures were 

calculated by Kind using his measured velocities and the assumption 

that the total pressure remained constant along a streamline.  Cal- 

culated values are shown for ^/J^   S .054.  Values for ^-ju.  ■ .046 

are slightly different but are close enough that the curve is some- 

what difficult to read if they are included.  Calculated outer edge 

pressures are for the point in the wall jet finite difference grid 

where the outer boundary conditions are applied. 

Calculated and measured pressures are in reasonable agreement 

with each other.  The calculated wall pressure gradient is in good 

agreement with experiment for portions of the jet region, but is 

higher in places and lower in others.  The difference is of the order 

of 30Z for some of the latter portion of the jet, and this has some 

observable effects on the velocity profiles.  However, the results 

are still reasonably good.  In contrast to this is the case indicated 

for 7(5)  ■ 0.  The calculations for this case are identical ex- 

cept that the approximate streamline curvature correction is not in- 

cluded.  Up to about %-*Uc7
m  «05, the results for this case are 

indistinguishable from the previous case.  However, the results then 

begin to diverge at an increasing rate.  As the wall pressure gra- 

dient remains too mild, the maximum velocity in the wall jet remains 
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too large, and these effects reinforce each other.  The end result of 

this is that the calculations become useless. 

The rapid change in wall pressure near the slot is a rasult of 

fairing in the radius of curvature over a short distance.  A some- 

what longer fairing could also be used, but should be completed by 

about £ — ^st.   " '^ to match t*ie measured wall pressure values in 

.01 <  £- Sy^T <   m  'U   .  Such a fairing is still quite 

rapid to apply to the outer boundary conditions at the outer edge 

of the upstream boundary layer, so the procedure described in Section 

5 was adopted.  The actual fairing used does not seem significant in 

the downstream calculations. 

The pressure in the separated region is in reasonable agree- 

ment.  Kind's measured value for  W^- is »65, the calculated value 

for the lower surface is .47, and the calculated value for the upper 

surface is .27 for  C^ - .054 (--. Zfor C»  ■ .046).  The calcul- 

ated value is taken as the value obtained on the last iteration, 

i.e., the Iteration that determined a separated profile. However, 

it is somewhat difficult to get a precise value for the wall jet sep- 

aration pressure. The pressure gradient is very large, and a small 

change in the location of the separation point can make a significant 

change in the calculated pressure.  This is complicated by the ex- 

pression used for -f  ( £ ) being crude, and can also be complicated 

by using a fairly large step size as was done in the present calcul- 

ations. 

Figs. 10 through 15 show calculated and measured wall jet pro- 

files. The values of £ — ?   given are for the corresponding sta- 
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tions in the vail jet grid.  In some cases, the stations do not cor- 

respond exactly with the location of the measured profile, but the 

difference is small. Figs. 10 through 12 are for C^  ■ .054 

( Cfa - .0055) and Figs. 13 through 15 are for C^ - .046 

( (\^ ■ .0051).  In Fig. 12, the calculated and measured profiles on 

the right are at somewhat different locations. 

The agreement with experiment is good for either set of profiles, 

especially since measured profiles and pressures are not used in the 

calculations. Which set provides the best agreement is somewhat am- 

biguous since one set is better in some ways while the other is 

better in others. Comparing Figs. 10 and 13 shows that the solution 

for C^  - .054 gives better agreement for station 9, while the 

solution for C<x ■ .046 gives better agreement for the inner region 

at station 12.  In either case, however, the agreement between mea- 

sured and calculated values is within about 51.  For either set of 

profiles, the agreement at stations 15 and 18 is essentially the same 

as the agreement at station 12, although at station 18 there is a 

slight tendency for the maximum velocity to be too large. Direct com- 

parison with experiment of either profile at station 22 is complicated 

by the fact that the calculated and measured outer edge velocities 

differ by about 10Z. The solid lines represent the calculated pro- 

files, while the dashed lines represent the profiles multiplied by the 

ratio of calculated to measured outer edge velocity. The dashed lines 

are thus probably more representative of the velocity for the inner 

region.  If so, the solution at station 22 tends to follow the sol- 

ution at station 18 except that the velocity at station 22 remains too 
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high very near the wall. For CJ^ * .046, separation was calculated at 

station 25 ( £- %SLt>T
m  .0681) and for Cu - .054 separation was cal- 

culated at station 26 ( ^ - ?   - .0706).  Kind experimentally de- 

termined separation at £- ^?   ■ .0711, and the experimental pro- 

file given in Fig. 12 (on the right) is for £- tsu»rm  -0706- T*1118 

the calculated and measured separation points agree well, but there 

is no calculated profile to compare to experiment.  The calculated 

profile in Fig. 12 is thus for station 25  (the last profile deter- 

mined), but the step size is relatively large and agreement should 

not be expected.  However, it is of some interest to indicate how 

rapidly the jet is changing, so the profiles are included. The cal- 

culated profile is multiplied by the ratio of the calculated to mea- 

sured velocity. 

Without additional comparisons with experiment, conclusions 

drawn from the above observations are somewhat tentative. However, 

during (numerous!) development calculations, some results occurred 

with such monotonous regularity that some effects seem clear.  All 

calculations were started with a turbulent slot profile.  The vel- 

ocity profile at station 9 is only sensitive to the assumed C^_ and 

to the value of Kc € XA   [Eq. (5-19) or (5-21)]. Variations in the 

radius of curvature fairing and inner eddy viscosity model have little 

effect on the portion of the profile far enough from the wall to be 

compared to experiment. Until pressure gradient effects begin to be- 

come severe (at about station 18), the solution depends largely on 

the value of  /C £ t* •  Between stations 9 and 12, there is a strong 

tendency for the maximum velocity to decrease too slowly and the thick- 
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ness of the outer region to remain too small. Also In this region, 

the value of £*  tends to remain nearly constant. The curvature 

correction JS    accounts for most of the change in j^c £ * in this 

region, and before it was incorporated the discrepancy between cal- 

culated and measured values was about double that in the present re- 

sults. This may be an indication of some difficulty in the expres- 

sion for £ M as the flow passes from a favorable to an adverse pres- 

sure gradient.  From station 12 to station 18, calculated velocity 

profiles, pressure gradients and outer edge velocities follow mea- 

sured values very well.  Pressure gradient effects begin to become 

severe at about station 18, and tend to dominate calculations down- 

stream.  For the calculations for Q.n  ■ .054, for example, the shear 

stress variation over O £. JjL.Zy^ is about 5Z for station 15, 15Z 

for station 18, 50% for station 22, 300Z for station 24, and separa- 

tion occurs at station 26. Thus pressure effects are comparable to 

shear stress effects for a considerable distance upstream of separa- 

tion.  If the wall pressure gradient is too mild, the velocity very 

near the wall tends (strongly) to remain too high. Fig. 9 shows that 

the wall pressure gradient is somewhat too mild between stations 18 

and 22, and the velocity profiles at station 22 show some of this 

effect. Downstream of this the calculated wall pressure gradient 

becomes larger than the measured one, and this tends to compensate 

to some degree.  Calculations over the latter portion of the jet re- 

quire a reasonable wall pressure distribution if they are to have any 

hope of success. 
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7.  CONCLUSIONS 

A self-contained analysis for arbitrary circulation controlled 

airfoils in incompressible flow is developed and found to be capable 

of predictions that are in good agreement with experinent.  The an- 

alysis requires calculations for potential flow, laminar and turbu- 

lent boundary layer flow, and turbulent wall jet flow. 

The turbulent wall jet calculations are the most difficult and 

are subject to the most uncertainty.  Accurate calculations require 

reasonably accurate predictions of the wall pressure distribution in 

the wall jet region.  Conventional boundary layer approximations pro- 

vide an accurate wall pressure distribution for much of the wall jet 

region, but require modification for the latter portion of the jet. 

An exact correction to account for this seems untenable since such a 

correction tends to produce stability problems in the calculations. 

Such stability problems might well be expected since the correction 

involves second order streamwise derivatives, which do not fit into 

boundary layer theory.  A plausible approximate correction based on 

average values seems adequate and workable.  Such a correction is 

used, and suggestions for improving it are offered. 

The shear stress model for the wall jet is subject to some un- 

certainty because of a lack of detailed experimental data, or in some 

cases because of conflicting experimental data. However, the model 

does seem reasonable and is formulated using available information. 

It is possible that additional comparison of calculated and experi- 

mental results would lead to improvement of the model.  Such compar- 
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isons would probably be more helpful if the flow were subject to less 

severe curvature and pressure gradients than in the present calcula- 

tions. 
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APPENDIX:  COMPUTER PROGRAM 

This appendix contains a listing of the computer program and 

a description of the program Input and output. The program consists 

of the potential flow program described in Section 3, the boundary 

layer program described in Section 4, and the wall jet program de- 

scribed in Section 5. Only two dimensional flows ( ■€:   - 0) without 

suction ( U^r ■ 0) are considered here, and the boundary layer pro- 

gram is set up for this type of flow. 

The program operates as follows. With the input given (Table Al), 

the potential flow is calculated and converted to the form required 

for boundary layer and wall jet use.  Boundary layer calculations are 

performed first for the lower surface and then for the upper surface. 

Wall jet calculations are then performed for a prescribed number of 

assumed slot conditions.  The initial assumed value of UJ^  for the 

slot, and the increment A CLf    for subsequent assumed values, are 

input.  Drag and the change in C.  caused by the pressure variation 

over the wall jet region could be calculated, but are not at present. 

The input (Table Al) consists of three subroutine and three data 

card8.  The subroutines provide the airfoil geometry as follows. 

Subroutine BODY provides the coordinates ( X^ /c ) of the airfoil as 

required for the Theodorsen method.  Subroutine SLOPE provides the 

values of -y— required to convert to curvilinear coordinates. For 

convenience in cases where analytic expressions for  —J~-     are not 

available, an option in the program allows values of dyc/ctncto  be 

determined numerically.  In this case, subroutine SLOPE is ignored, 
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tells the program which procedure to use.  Subroutine RADIUS provides 

and   (y.      is automatically calculated numerically. An input integer 

the surface radius of curvature in the wall jet region. The sub- 

routines for Kind's airfoil are included in the program listing. The 

three data cards provide the rest of the input, including specifying 

options in the program.  The form required for the data cards can be 

determined by inspection of the READ statements on the first page of 

the program listing. 

Output from the program consists of the potential flow output 

(Table A2), the boundary layer output (Table A3), and the wall jet 

output (Table A4). The numbering system is different in the three 

sets of output.  For the potential flow output, points are numbered 

in a counter-clockwise direction, with point 1 being the trailing 

edge.  For the boundary layer output, point numbers are referenced 

from the front stagnation point.  Point 1 is the first output point 

downstream of the stagnation point along the upper surface of the 

airfoil. The remaining upper surface points are numbered consecu- 

tively until the rear potential flow stagnation point is reached. 

i 

If the last upper surface point is denoted by Y-. , the first point 

downstream of the front stagnation point along the lower surface of 

the airfoil is denoted by (-J     +  / )    .  The remaining lower surface 

points are numbered consecutively.  The wall jet points are numbered 

consecutively, with point 1 being at the blowing slot. 
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Computer 
Symbol 

Quantity 
& Units Comments 

CL 

ALPHA 

REC 

NEPS 

NBPTS 

KUTTA 

NAEQN 

AK 

HI 

NT 

oC       <degrees) 

Re«, 

N^ 

N B 

N. 

K 

N 

Lift coefficient 

Angle of attack 

Free stream Reynolds number 

Number of output points 

(must be even). 

Recommended:  40 ±   A^e —  80 

Number of body coordinates to 

be input (must be even). 

Recommended:  200 £ Nß £. 400 

Kü  » 0 if input  C^ is to be 

used. 

K U 1 if Kutta condition is 

to be used. 

N ■ 0 If airfoil slopes are to 
A 

be calculated numerically. 

N- 1 if subroutine SLOPE is 

to be used. 

(Turbulent V    grid parameters 

See Table^ Ref. 8 , j 

(continued next page) 



CHORD 

BT 

XCJET 

SLOTT 

ÜTSIG 

UTSIN 

STEPS 

NWJIT 

LAMSL 

b (feet) 

x 
Slot 

AU% 

&./<* 

Subroutine BODY 

126 

Chord 

See Fig. 3 

Cartesian coordinate of 

blowing slot 

Dimensionless slot thickness  — 

Initial value of (JL?   for the 

blowing slot 

Increment of Ut   for the 

blowing slot 

Maximum F step size for wall 

jet grid 

Number of times wall jet 

calculations are to be 

performed. Assumed CLr  is 

incremeted by AUf   each time. 

LAMSL - 0 for a turbulent slot 

profile. 

LAMSL - 1 for a laminar slot 

profile 

Subroutine BODY provides values 

for XX(J), YY(J) (J-1 NB) , 

c and b. XX —> x and YY -* y 
c c 

in Fig. 3. All dimensions are 

(continued on next page) 
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in feet.  Points are numbered 

in counterclockwise order around 

the airfoil. The point J - 1 

must be the trailing edge 

(y, ■ 0, x > 0) and J-1/2N-+1 
C        C                    a 

must be the leading edge 

(yc - 0, xc< 0). It is 

desirable to have nearly equal 

arc lengths between points. 

Subroutine SLOPE Subroutine SLOPE provides the 

slopes of the upper and lover 

airfoil surfaces as functions of 

x . 
c 

/ ^/c \ 
™*  ™ \ ofXc '       upper surface. 

YPL - (-^ )   lower surface. 

The function statement 

X - .5*(XUL-XLL)*XA+.5*(XUL+XLL) 

must be Included. 

Subroutine RADIUS Subroutine RADIUS provides R* 

for a given X, where X-^f-^ - 
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TABLE A2:  POTENTIAL FLOW OUTPUT 

Computer 
Symbol 

Quantity 
& Units Comments 

PHI 9 (degrees) Angle <f)   defined In Fig. 3. 

X xc (feet) fSee Fig. 3 

Y yc (feet) I 
Ü 

"*/".. 
Eq. (3-14) 

CP s Eq. (3-16) 

CL cl Lift coefficient 

ALPHA cC (degrees) Angle of attack 

XSTAG 
stag 

(feet) Coordinates of front 

YSTAG ystag 
(feet) stagnation point. 
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TABLE A3:  BOUNDARY LAYER OUTPUT 

Computer 
Symbol 

Quantity 
& Units Comments 

X X (feet) Fig. 1 

XI j* Eq. (3-17a) 

BETA 
fi 

Eq. (3-17b) 

UE «? Eq. (3-14) 

XC x 
c (feet) Fig. 3 

YC yc (feet) Fig. 3 

DELTA s (Inches) Eq. (4-23) 

DELST 

THETA 

CF 

H 

REC 

REDS 

RET 

ITERATION 

DFW, DDS 

5* 
e 

H 

Re 

(inches) 

(inches) 

CO 

Re, 

Re 6 

Eq. (4-21) 

Eq. (4-22) 

Eq. (4-20) 

H- g*/e 

Eq. (4-24) 

Eq. (4-25) 

Maximum is 20 

Iteration tolerances 

For laminar flow, DDS - 0, 

(continued next page) 
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NEDCE NEDGE must be < NT (Table Al) 

If NEDGE - NT, the ^ grid 

should be changed to allow for 

a thicker boundary layer. 

FW" 
f; 

Values of f" Indicate 

appropriate values of h. 

(Ref. 8). 
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TABLE A4:  WALL JET OUTPUT 

Computer Quantity 
Symbol & Units Comments 

CMU j   cA Eq. (5-49) 

CM C^ Eq. (5-50) 

UAVE £&£ Average velocity In bloving slot. 

UMAX «£ Maximum velocity in bloving slot. 

HW 
\ 

XI \   k Kq. (5-7) 

DELXI 
0 $SLoT 

UE 
« 

Eq. (5-12a) or Eq. (5-13) 

CPW j    °2ur 
CPE C*e 

Eq. (5-12b) or Eq. (5-13) 

CP (POT) C/>e 
**• /- u* 

TAUW I     K \              % Ü? H>r / (<?**-) 
DELTA !   A * 
GMAX c. 

GMIN G - 
mln 

G   = 0 for profiles vithout 

a minimum velocity 

ITERATION Maximum Is 10 

ETAMAX |     7- 
ETAMIN !  %i* 

DHW, DCPW Iteration tolerances 

JDELTA 7 ■ %  at / ■ ^^^ 



DIMENSION   ZPI401).20(401)fL(lOO) 
DIMENSION   A(IOO) .B(101) ,C(100>.0(190),E(100),F(100) 
DIMENSION   XU(IOO).YU(IOO) .U(100)»P(200) 
COMMON/MAINWJ/PF(3,2 5)»NPF,STEPS 
C0MM0N/MAINSL/STFT<7) »LAMSL 
COMMON/HBDBMB/XI (100) .BETA( 1 00 ) » UE < 100 I, FW ( 100 ), CPHK 100 ). RWC ( 100) 

S»CF( 100) ,XC( 100) ,YC(100),X(100) ,CHORD,EPS»TVC.REC»NT»AKfHl»ETAET, 
$LAM,NPRNT,JMAX»JMIN»JJET,JSEPP 

COMMON/HBDBBO/XXC4 00I .YY(400) 
EQUIVALENCE   (U(1).UE(1)).(XU(1).XC(1)),(YU(1),YC(1)) 

C 
C CALCULATE   POTENTIAL   FLOW 
C 

READ   908.CL»ALPHA»REC»NEPS 
READ   909,AK,H1»NT1NBPTS.KUTTA1NAEQN 
READ   911.XC JET. SLÖTT.UTSIG.UTS IN, STEPS. NW JIT. LAMS L 
CHORD   =   14.625 
THICK   -   .2 
CAMS   ■   .05 

C INPUT   BODY  COORDINATES 
CALL   BODY   (CHORD ,THICK.CAMB.NBPTS»BT.RLE.RTE) 

C INPUT   SHOULD   BE   COMPLETE 
,   i - NPRNT   =   0 

NLE   =   NBPTS/2   *   1 
PI    =   3.141593 
TOPI    ■   6.283185 
RADEG   =   360./TOPI 

C CALCULATE   PSI    AND  OMEGA 
DO   1   J=l.NBPTS 
HXY   =   1.   -   (XX(J)/B2)**2   -   (YY(J)/B2)**2 
SR   »   (HXY**2   «■   (YY(J)/BT)**2)**.5 
IF   (HXY   .LT.    0.    .AND.    SR   .LT.    ABS(HXY))   SR   =   ABS(HXY) 
SO   =   (.5*(HXY*SR))**.5 
Z0( J)   =   ARSIN(SO) 
IF   (XX(J)    .LT.   0.   .AND.    J   .LE.    NLE)    ZO(J)   *   PI   -   ZOU) 
IF   (XXU)   .LT.   0.   .AND.   J   .GT.   NLE)    ZO(J)   =   PI   ♦   ZOU) 
IF    (XX(J)   .GE.   0.   .AND.   J   .GT,   NLE)    ZO(J)   =   TOPI   -   ZO(J) 
SHS   =   .5*( SR-HXY) 
IF   ( SHS   .LT.   0.)    SHS   »   0. 
SH   »   SHS**. 5 
IF (J .LT. NLE .AND. YY( J) .LT. 0.) SH = -S H 
IF (J .GT. NLE .AND. YY(J) . GT. 0.) SH ■ -SH C 

1 ZP(J) =ALOG(SH ♦ (1.*SHS)**.5) ^ 
IF (NPRNT .EQ. 0) GO TO 3 



DO   2   J=l,N8PTS 
2 PRINT   901,J,XX<J),YY<J),ZP<J),ZO<J) 
3 DPHI    =   TOPI/NEPS 

00   4   J = 1,NEPS  ^ 
PU)   =   ( J-.5)*DPHi_^~ 

4 PCNEPS+J)   =   <J-1J*DPHI 
CALCULATE   EPSILON 
DO   5   J=1,NEPS 
LL   =   1 
IF   (J   .GT.   1)    LL 

5   JJ=LL,NBPTS 
(Z0( JJ)    .GT,    P( J) ) 

J)   =   JJ 

9 
10 

11 

o 

GO   TO   5 

=   L(J-l) 
DO 
IF 
L( 
CONTINUE 
DO   6   J = l tNEPS 

=   0. 
L(NEPS) 
1 
L(l) 
TOPI   -   ZOt JL) 
Z0( JU) 
Dl   ♦   D2 
=   -ZP( JL)*D2/D1/D3 
J=JLfNBPTS 
=   F(l)    ♦   ZP(J) 
J=1,JU 
=  F(l)   ♦   ZPCJ) 
=   F(1)/(NBPTS-JL+JU*1> 

F( J) 
JL = 
JM = 
JU = 
Di = 
D2 = 
D3 
D< 
DO 
F< 
DO 
F( 

LI 
7 

1) 
8 

1) 
F( 1) 
DO   10 

«•    ZP(JM) *(1./D1-1./D2)   ♦   ZP(JU)*D1/D3/D2 

JU 
JL = 
JM = 
Dl = 
D2 = 
D3 = 
D( J) 
DO 9 
F( J) 
F< J) 
SO = 
JM 

fV** I 

f(L( / 

J=2fNEPS 
L( J) 
L<J-l) 
(JU  ♦   JD/2 
ZO(JM)   -   ZO(JL) 
ZO(JU)    -   ZO(JM) 
ZO(JU)    -   ZO(JL) 
-   -ZP<JL1*D2/D1/D3   ♦   ZP(JM)*(1./D1-1./D2>   ♦   I? i JU KD1/D3/D2 
JJ=JLtJU 
=  F( jf   «•   ZP« JJ) 
=   FU)/(JU-Jl*l) 
PI/(2*NEPS) 
NEPS/2   -   1 

DO   11   J-l.JM 
SR   =   SIN( SO*(2*J*l)»/SlN(SO*«2*J-in 
C< J)   =   ALOG   (ABS(SR) > 
DO   13   J=lfNEPS 

6 



E( J)   =  DPHI*D( J) 
00   12   JJ»1,JM 
JU  =   J   ♦   JJ 
IF   (JU   .GT.   NEPS)    JU   =   JU   -   NEPS 
JL   =   NEPS  ♦   J   -   JJ 
IF   (JL   .GT.   NEPS)    JL   =   JL   -   NEPS 
E(J)   =   E(J)   ♦   (F(JU)-F(JL))*C(JJ) 12 

13 EtJ)   =   E(J)/PI 
IF   ( NPRNT   .EQ.    0)   GO   TO  16 
DO   14  J=1,NEPS 

1* PRINT   902,J»F(J),0(J) fE(J)   ^ 
00   15   J = l ,JM                                        ?<<   ] 
PRINT   903,J,C(J)                                                   f^J 
CALCULATE   PHI                                          yt> ' 

15 

16 00   17   J=1,NEPS 
P(J)   =   P(NEPS*J)   -   E(J) 
A( J)   =  DPHI*( J-l)   ♦•   E( J) 
IF   (A(J)   .LT.   0.)    A(J)    =   A(J)*TOPI 
IF   (A(J)   .GT.   TOPI)    A(J)    =   A(J)-TOPI 
IF   (P(J)   .LT,   0.)    P(J)    =   TOPI   ♦   P(J) 
IF   (P(J)   .GT.   TOPI)    P(J)    =   P(J)    -  TOPI 

17 

18 

19 
20 

21 
22 

W» , ^ ;j 

CONTINUE 
CALCULATE   EPSILON  PRIME 
F(i)   =   .1*(-2.*E(NEPS-1)-E(NEPS)*E(2)*2.*E(3))/DPHI 
F(2)   =   .l*(-2.*E(NEPS)-EU)f E(3)*2.*EU> )/DPHI 
F(NEPS-l)   =   .l*(-2.*E(NEPS-3)-E(NEPS-2)«-E<NEPS)*2.*E(l)l/DPHI 
F(NEPS)   =   .1*1-2.*E(NEPS-2)-E(NEPS-lKE(l)*2.*E(2))/DPHI 
LL   =   NEPS-2 
DO   18   J=3,LL 
F(J)   =   .1*(-2.*E( J-2)-E( J-1)*E(J*1)«-2.*E(J*2))/DPHI 
DO   20  J=1»NEPS 
LL   =   1 
DO   19   JJ=LLtNBPTS 
IF   (ZO(JJ)   .GT.   A( J))   GO  TO 20 
L( J)   =   JJ 
C(J)   =   0. 
IF   (L(l)   .LT.    L( NEPS))    LL*1 
IF   (L(l)   .LT.   L(NEPS))   GO   TO  22 
DO   21   J=2fNEPS 
IF   (L( J)   .LT.   L( J-l))   LL*J 
IF   (L(J)   .LT.   L(J-D)   GO   TO  22 
CONTINUE 
JM   =   LL  -   1 
IF   (JM   .EQ.   0)    JM   =   NEPS 
JL   =   L(JM) 



JU   =>   NBPTS 
DO   23   J=JL,JU 

23 C(LL)    = C( LL)   ♦   ZP( J) 
JU  =   L(LL) 
DO   24   J=1,JU 

24 C(LL)   =  C(LL)   «•   ZP( J) 
C(LL)    =  C(LL)/(NBPTS-JL*JU*1> 
AO   =   C(LL)*DPHI 
DO   26   J=lfNEPS 
IF   (J   .EQ.   LL)   GO   TO  26 
JU   =   L(J) 
JM   =   J-l 
IF   (JM   .EQ.    0)    JM  =   NEPS 
JL   =   L(JM) 
DO   25   JJ=JL,JU 

25 C(J)   =   C<J)   «■   ZP(JJ) 
C( J)   ■   C( J)/( JU-JL+1) 
AO   =   AO  ♦   C( J)*DPHI 

26 CONTINUE 
AO  =   AO/TOPI 
IF   (NPRNT   .EQ.   0)   GO  TO  28 
PRINT   903,LL.A0 
DO   27   J=1,NEPS 
SO   =   P(NEPS*J) GRADES 
SR   =   P( J)*RADEG 

27 PRINT   901,J,SOfSR,C(J)»F (J) 
28 ELK   =   EXP(AO) 

FIND   FRONT   STAGNATION   POINT 
ALF   =   ALPHA 
ALPHA = ALPHA/RADEG 
IF   (KUTTA   .EQ.    I)   CL   =   8. /CHORD*PI*BT*ELK*S IN< E (11 +ALPHA ) 
AR   =  CL/8.*CH0RD/BT/ELK/PI 
SR   =   ARSIN(-AR) 
PHIST   =   ALPHA   ♦   PI   -   SR 
PRINT   900 
PRINT   907 
L(l)   =   1 
DO   30   J=2.NEPS 
LL   =   L(J-l) 
DO   29  JJ=LL,NBPTS 
IF   CZO(JJ)   .GT.    PINEPS+JI)   GOTO   30 

29 L(J)   =   JJ M 
30 CONTINUE £ 

LL * 1 ^ 
IF   (PHIST   .GT.   PI)   LL   =   NEPS/2-1 



DO   31   J=LL.NEPS 
SO=P(NEPS*J)-E(J) 
IF   ( SO   .GT.   PHI ST)   GO   TO   32 

31 JSAVE   =   J 
32 ESTAG   =  E(JSAVE)   ♦   <<E(JSAVE+1)-E(JSAVEI)/OPHII* 

S(PHIST-P( JSAVE)) 
WSTAG   =   PHIST   *   ESTAG 
LL   =   1 
IF   (WSTAG   .GT,    PI)    LL=NLE 
DO   33   J=LLtNBPTS 
IF   (ZO(J)   .GT.    WSTAG)   GO   TO  3* 

33 JM   =   J 
34 PSIST   =   ZP(JM)   ♦    (<ZP< J**1)-ZP<JM))/ <ZO<JM+1)-Z0(JM)) )* 

$< WSTAG-ZOl JM)) 
EP   =   FXP(PSI ST) 
EM   =   EXP(-PSIST) 
XSTAG   ■   BT*COS( WSTAG )*< EP*E M) 
YSTAG   =   BT*SIN(WSTAG)*(EP-EM) 
CALCULATE   U   AND   CP 
PRINT   904fCLfALF ,XSTAG,YSTAG 
PRINT   905 
PO   36   J = l ,NEPS 
IF   ( J   .NE.   51)   GO   TO  35 
PRINT   900 
PRINT   907 
PRINT   904,CL,ALF ,XSTAG,YSTAG 
PRINT   905 

35 SP   =  P( J) 
LL   =   L(J) 
SO   =   DPHI*( J-l! 
PSI   =   ZP(LL)   ♦   <<ZPUL*l)-ZP(LL))/<ZO(LLn)-ZO(LL))l*(S0-Z0<LL)) 
EP   =   EXP(PSI) 
EM   =   EXP(-PSI) 
TS   =   SIN( SO) 
TC   =  COS( SO) 
SHS  =   .5*<EP-EM! 
SR   =   Ul.   ♦   D( J) **2)*<SHS**2   ♦   TS**2))**.5 
IF   (J   .EQ.   1   .AND.   KUTTA   .EQ.   1)   SR   =   i.E-8 
SO   =   SIN( SP-ALPHA)   ♦   AR 
UCJ)   =   ELK*ABS(S0*(1.-FtJ))I/SR 
P<J)   »  U  -   U(J)**2 
SP   =   SP*RADEG 
XU(J)   =   BT*TC*(EP*EM) 
YUU)   =   BT*TS*(EP-EM) 

36 PRINT   906, J,SP,XU( J) ,YUC J) ,U<J) ,P(J) 

M 

g 



c 
c 
c 
c 
c 

BYE,    TEDDY 

CHANGE   TO   BOUNDARY   LAYER  COORDINATES 

IF    (NAEQN   .EQ.   0)   GO   TO  43 
JM   =   NEPS/2 
B(I)    =   .34785485 
B(2)   *   ,65214515                           G^^VS V- 
B(3)   =   B(2) 
B(4)    =   B( 1) 
C(1)   =   -.86113631 
C(2)   =   -.33998104 
C(3)   =   -CC2I 
c(4) = -sen 
DO   42   J=1,JM 

v*sM™*-    i   Ikipf*** 
: 

A(J)   ■   0. 
A(JM+J)    =   0. 
IF   (J   .GT.   1   .AND.    J   .LT.    JM)   GO  TO   39 
XLL   =   XU( J) 
XUL   =   XU( J+l) 
00   37   JJ=1,4 
CALL   SLOPE   (XLL,XUL,C( JJ) ,YPU,YPL) 
SR   =   .5/YPU 

37 A(J)   =   A(JJ   ♦   B(JJ)*SR 
A(J)   =   ABS( .5*( XUL-XLL) *A ( J>    ♦   YU(JM)   -   YUCJ)) 
XLL   =   XU( JM+J) 
JL   =   JM+JU 
IF   (JL   .GT.   NEPS)   JL=1 
XUL   =   XU(JL) 
DO   38   JJ=1,4 
CALL   SLOPE   ( XLL,XUL,C( JJ) »YPU,YPD 
SR   =   . 5 /YP L 

38 A(JM+J)   =   AUM+J)   ♦   B(JJ)*SR 
A(JM*J)   =   ABS(.5*( XUL-XLL)*AUM*J)   «•   YJtJL)    -  YUIJM+J)) 
GO   TO   42 

39 XLL   =   XU(J) 
XUL   *   XU(J*1) 
DO   40   JJ=1,4 
CALL   SLOPE    (XLL,XUL,C( JJ) ,YPU,YPL) 
SR   =   ( l.*YPU**2) **.5 

40 A(J)   =   A(J)   ♦   B(JJ)*SR 
A(J)   *   ABS(.5*(XUL-XLL)*A( J)) 
XLL   =   XUUM+J) 
XUL   =   XU(JM*J*1) 



DO   41   JJ=lf4 
CALL   SLCPE    <XLL,XUL,C< JJ) ,YPU,YPL) 
SR   =   (l.*YPL**2) **.5 

41 A(JM*J)   =   ACJM+J)   «•   B(JJ)*SR 
A(JM*J)    =   ABS(.5*<XUL-XLL)*<A< JM+J)) 

42 CONTINUE 
GO   TO   52 

43 LL   =   NEPS/2 
L( 1)   =   1 
DO   45   J=2,LL 
SO   =   XUU) 
JL   =   L(J-l) 
DO   44   JJ=JL,NLE 
IF   (XX(JJ)   .LT.    SO)    GO   TO 45 

44 L( J)   =   JJ 
45 CONTINUE 

LM   ■   NEPS/2 
LL   =   LM  «•   1 
L(LL)   =   NLE 
DO   47   J = LL,NEPS 
SO   =   XU(J) 
JL   =   L( J-l) 
DO   46   JJ=JL,NBPTS 
IF   ( XX( JJ)    .GT.    SO)   GO   TO 47 

46 L(J)   =   JJ 
47 CONTINUE 

LL   -   NEPS/2-2 
LM   =   NEPS/2+3 
LU   =   NEPS-2 
DO   51   J=1,NEPS 
IF   (J   .GT.   3   .AND.    J   . LT.    LL)   GO  TO  49 
IF   (J   .GT.   LM   .AND.    J   . LT.   LU)    GO   TO   49 
SO   =   0. 
JL   =   L(J) 
JM   =   J+l 
IF    (J   .EQ.   NEPS)    JM   =   1 
JU  =   L(JM) 
IF   (J   .EQ.   NEPS)    JU  =*   NBPTS-1 
DO   48   JJ=JL,JU 

48 SO   =   SO   «•   (XX( JJ*1)-XX< JJ))/(YY(JJ*n-YY(JJ)l 
SR   »   SO/CJU-JL+1) 
SO   =   ( 1.*SR**2)**.5 2 
JM   *   J*l a 
IF   (JM   .GT.   NEPS)    JM=1 
A(J)   =   ABS( S0*(YU< JM)-YUC J) ) ) 



«9 

50 

51 
52 

53 
54 

55 

56 

57 

58 
59 

GO 
SO 
JL 
JU 
00 
so 
SR 
SO 
A( J 
CON 
IF 
JL 
JU 
DO 
JSA 
IF 
CON 
JL 
JU 
00 
JSA 
IF 
CON 
REI 
PSR 
IF 
DO 
B( J 
IF 
CON 
IF 
IF 
JU 
DO 
IF 
IF 
CON 
JU 
IF 
SR 
SO 
IF 
IF 
DO 
IF 

TO   51 
=   0. 
=   L(J) 
■ L(J*1) 
50   JJ=JL,JU 
*   SO  «•   ( YY( JJ*1)-YY( JJ) )/ (XX(JJ*1 )-XX(JJ) ) 
■ S0/( JU-JL+1) 
=   ( 1.*SR**2)**.5 
)    =   ABS< SO*(XU( J+ll-XUC J) )) 
TINUE 
(WSTAG   .GE.   PI)   GO  TO   54 
=   2 
=   NEPS/2 
53   J=JL,JU 
VE   =   J 
(XU(J«-1)    .LT.    XSTAG   .AND.   XU(J)    .GE.   XSTAG)   GO   TO   56 
TINUE 
=   NEPS/2+1 
=   NEPS-1 
55   J=JL,JU 
VE   =   J 
(XU(J*1)   .GT.   XSTAG   .AND.   XU(J)   .LE.   XSTAG)   GO  TO   56 
TINUE 
NITIAL   U   AND   P 

=   ALPHA   ♦   ARSIN(-AR) 
(PSR   .LT.   0.)    PSR   *   TOPI + PSR 
57   J»lfNEPS 
)   =   DPHI*( J-l)   -   EC J) 
(B(J)   .LT.   0.)   B(J)    =   TOPH-B(J) 
TINUE 

JM   =   NEPS 
GO  TO  59 

B(NEPS)) 
B(NEPS)) 

(B(1)   .LT. 
(B(l)    .LT. 
=   NEPS-1 
58   J=1,JU 
(B(J*l)   .LT.    B( J))    JM   =   J 
(B(J+l)   .LT.   B( J))   GO  TO  59 
TINUE 
*   JM+1 
(JU   .GT.   NEPS)    JU   «   1 
=   B( JU)   ♦   TOPI 
»   B(JM) 
(PSR   .GE.   SO   .AND.    PSR   . LT.   SR) 
(PSR   .GE.    SO   .AND.    PSR   . LT.   SR) 
60   J=1,NEPS 
( J   .EQ.   JM)   GO   TO  60 

JREAR 
GO  TO 61 

JM 
VX3 



60 
61 

62 

63 

64 

PSR 
PSR 

JU   =   J + l 
IF   (J   .EQ.   NEPS)    JU=1 
IF   (PSR   .GE.   B(J)   .AND. 
IF   (PSR   .GE,   8(J)   .AND. 
CONTINUE 
IF   (JREAR   .LT.    JSAVE)    JTOP   = 
IF   (JREAR   .GE.   JSAVE)    JTOP   = 
JBOT   -   NEPS-JTOP 
00   62   J=1»JT0P 
JM   =   JSAVE + 1-J 

JM   .LE.    0) 
U( JM) 

LT. 
LT. 

B(JU)) 
B(JU)) 

JREAR   =   J 
GO  TO  61 

JSAVE-   JREAR 
JSAVE + NEPS-JREAR 

IF   ( 
3( J) 
C( J)    ■   P( JM) 
D(J)   =   XU(JM) 
F( J)   -   YU(JM) 
DO   63   J=l,JBOT 
JL   =   JTOP+J 
JM   =   JSAVE   ♦   J 
IF   (JM   .GT.   NEPS) 

JM   =   NEPS+JM 

B( JL) 
C( JL) 
0( JL) 
F( JL) 
Dl   = 
D2   = 
03   = 
D4   = 
D5  » 
06  = 
SR   = 
SR   = 
JU   = 
IF   (J 

JM   =   JM-NEPS 
U( JM) 
P( JM) 
XU( JM) 
YU( JM) 

XU( JSAVE) - XU(JSAVE-1) 
XU(JSAVEU) - XU( JSAVE) 
01*02 
XSTAG   -   XU(JSAVE-1) 
XSTAG   -    XU( JSAVE) 
XSTAG   -   XU( JSAVE+l) 
-ACJSAVE-1)*D4/D1*D6/D2 
SR   -   A( JSAVE-1) 
NEPS/2+1 

JU) 

♦   (A(JSAVE)+A(JSAVE-l))*D4/D3*D5/02 

JM NEPS+JM 

.EQ. 
X( I)   =   SR 
JU   =   JTOP-l 
DO   64   J^ltJU 
JM   =   JSAVE-J 
IF   (JM   .LE.   0) 
X( J+ll   »   Xt J)   ♦   A( JM) 
X( JTOP + 1)   =  A( JSAVE)-SR 
JU   =   JBOT-1 
00   65   J=lfJU 
JL   =   JTOP + J 

=   JSAVE   *J 
(JM   .GT.   NEPS)   JM   =   JM   -   NEPS 

SR   *   ACJU)*(XSTAG-XU(JU>)/(XU(JU*1)-XU(JU)) 

JM 
IF 

I 



65 

66 

6? 

X( JL + 1)    =   X( JL)    ♦   A( JM) 
00   66   J = l ,NEPS 
U( J)    =   B( J) 
P( J)   =  C< J» 
XU(J)   =  D(J) 
YU( J)    =   F( J) 
CALCULATE    XI    AND   BETA 
XI(1)   =   .5*X(1)*U(1)/CHORD 
XMJTOP + 1)    =   .5*X( JTOP-H) *U( JTOP+1)/CHORD 
JU   =   JTOP-1 
DO   67   J=2,JU 
Xi   =   X< J-l) /CHORD 
X2   =   X( J) /CHORD 
X3   =   X( J*l) /CHORD 
Cl   ■   U( J-l) /( X2-X1)/(X3-X1) 
C2   =   -U(J)/(X2-X1)/(X3-X2) 
C3   =   U( J+l) /( X3-X1)/(X3-X2) 
Dl   =   CUC2+C3 
02   =   -C1MX2+X3)    -   C2*(X1*X3)   -   C3*(X1*X2) 
D3   =   Ci*X2*X3   ♦   C2*X1*X3   ♦   C3*X1*X2 
XI(J)   ■   XKJ-1)   ♦   ( X2-X1 ) *<D1*X1*X2 + .5*D2*(XH*2)*D3) 

$ *D1*< X2-Xll**3/3. 
XKJTOP)   =   XHJTOP-1)   ♦   (X3-X2)*<D1*X2*X3*.5*D2*(X2*X3)+D3) 

$ ♦   D1*(X3-X2)*«3/3. 
JL   =   JTOP+2 
JU  =   NEPS-1 
DO   68   J=JL.JU 
XI   =   XU-ll/CHORO 
X2   =   X< J) /CHORD 
X3   =   X( J*l) /CHORD 
Cl   ■   U( J-l) /<X2-X1)/(X3-X1) 
C2   =   -U( J)/(X2-X1)/<X3-X2) 
C3   =   U( J + 1)/(X3-X1)/<X3-X2) 
Dl   =   CUC2+C3 
02   =  -C1*(X2*X3)    -   C2*(XUX3)   -   C3*(X1*X2) 
D3   =  Cl*X2*X3  «•   C2*X1*X3   +   C3*X1*X2 

68 XKJ)   *   XKJ-1)   ♦   <X2-X1)*(D1*X1*X2*.5*D2*IX1«0(2)*D3) 
$        ♦   Dl*< X2-Xll**3/3, 

XKNEPS)   =   XKNEPS-1)   ♦   ( X3-X2) *(D1*X2*X3*.5*D2*<X2*X3 )*D3) 
$        ♦  Di*( X3-X2) **3/3. 

DO   69   J=1,NEPS 
69 B<J)   *   X(J)/CHORD 

Dl  =   (2.*B(l)*U<l)+2.*&C21*Uf2)-B(l)*UC2)-BC2)*Um)/ 
$(B( L)**2 + B(2)**2-&m*B(2)) 

BETA( 1)   =   XI<1)*D1/U(1)**2 



70 

D2   =   3.*(Um*B(l> + U(2>*Bf2)+um*B(3))-(UCL)*U(2)+U<3))*CBC 1) 
$        +Bm + B(3)) 
03   =   3.*(B( L)**2*BC2)**2 + BC3)**2)-(Bm + B(2)*Bm)**2 
01 =   2.*D2/D3 
BETAC2)   =   XI(2)*D1/U<2)**2 
Dl   =   ( 2,*B(JT0P*i)*U( JTOP*l)4-2.*8(JTOP*2)*U(JTOP+2l-B(JTOP*l)* 

$U( JTOP*2)-B( JT0P+2)*U( JT0P+1))/<B(JT0P+1>**2*B<JTOP+2)**2- 
$3(JT0P*1)*B<JTOP+2)) 

BETAUTOP + l)   =   XI(JT0P+1)*D1/U<JT0P*1)**2 
JL   =   JTOP+1 
JM   -   JTOP+2 
JU   =   JTOP + 3 
02 =   3.*(U( JL) *B< JL)*U( JM)*B(JM)+U<JU)*B(JU) ) 

$        -I U( JL)*U< JM)4>IHJUM*<B< JL)+B<JM)+B(JU)) 
D3   =   3.*<B( JL)**2«-B< JM) **2*BC JU ) **2 )-< Bt JL ) *B( JM )+BUU >)**2 
01   =   2.*D2/D3 
BETA(JT0P*2)    =   XI( JTOP+2)*D1/U< JT0P+2)**2 
JU  =   NEPS-2 
JL   =   JTOP-1 
JM   =   JTQP+3 
DO   73   J=3,JU 
IF   (J   .GE.   JL 
DO   70   JJ=1,9 
C(JJ)   =   0. 
LL   =   J-2 
LU   =   J*2 
HXY  =   •25*(B(LU)-B(LLI) 
XI   *   B(LL) 
DO   71   JJJ   =   LL,LU 
DX =   C BC JJJ)-X1)/HXY 

^-•5*DX 
l.-2.*DX+.5*0X**2 

C( 1)   ♦   P2**2 

71 

.AND.    J  .LT.   JM)   GO  TO   72 

PI 
P2 
cm 
C<2) 
C( 
c< 
C( 
C< 
cc 

3) 
A) 
5) 
6) 
7) 

C( 8) 
C(9 
Dl = 
D2 = 
D3 = 
D4   = 

= C(2) 
« C(3) 
= C(4) 
= C(5) 
= C(6) 
= C< 7) 
* C(8) 
= C(9) 
C<7) - 
C<2) - 
C(<V) - 
C(8)   - 

♦ Pl**2 
♦ 1. 
♦ Pi*P2 
♦ P2 
♦ Pi 
♦ U( JJJ)*P2 
♦ U( JJJ   *P1 
♦ U(JJJ! 
C(5)*C<9)/C<3) 
C(6)**2/C<3) 
C(5)*C(6)/C<3) 
C(6)«C<9)/C<3) 

s 



Cc 

05 =   C(l)   -   C(5)**2/C<3) 
06 =  D5*32   -   03**2 
Cl   -   (01*02-03*04)/06 
C2   =   (D4*D5-D1*D3)/D6 
OX   *   (Cl*((B( J)-Xl)/HXY-2.)-.5*C2)/HXY 
BETA(J)    =   2.*XI( J) *DX/U( J) **2 

72 IF   (J   .NE.   JL>   GO   TO   73 
OX   =   <C1*((B< J)-Xl)/HXY-2.)-.5*C2)/HXY 
BETA(J)    =   2.*XI< J)*DX/U( J) **2 
DX   =   ICi*<(B( J*l)-Xl)/HXY-2. )-.5*C2) /HXY 
BETAU + 1)   =   2.*XI( J*1)*DX/U< J*l)**2 

73 CONTINUE 
OX   =   <Cl*((8<NEPS-l)-Xl)/HXY-2.)-.5*C2)/HXY 
BETA(NEPS-l)   =   2.*XI(NEPS-1)*DX/U(NEPS-1)**2 
OX   =   (Cl*((B(NEPS)-Xl)/HXY-2.)-.5*C2)/HXY 
BETA(NEPS)    =   2.*XI( NEPS) *DX/U< NEPS) **2 
00   74   J=lf5 
JJ   =   JTOP+J 
IF    (BETA(J)    .GT.   1.)   BETA(J)    =   1. 
IF    (BETA(JJ)    .GT.   1.)    BETA<JJ)    =   1. 

74 CONTINUE 
J   =   JTOP+1 
JJ   =   JT0P4-2 
IF   (BETA(l)    .LT.   BETA(2)J    BETA(l)   =   l.«-X<1)*(BETA(2)-l.)/X(2) 
IF   (BETA(J)    .LT.   BETAIJJ))    BETA(J)   =   1 .«-X < J )* ( BET A< J J )-l . I/X( JJ I 

CALCULATE   BOUNDARY   LAYER   FLOW 

DO   80  J=1,NEPS 
FW( J)   *   0. 
CPHI(J)    =   0. 

80 RWC< J)   =   1. 
00   81   J=1,JT0P 
IF   (XC(J)   .GT.   XCJET)   GO   TO   82 

81 JJET   =   J 
82 NPF   =   JTOP-JJET+l 

DO   83   J=l ,NPF 
JJ   =   JJET-H-J 
PF(1,J)   =   X(JJ)/CHORD 
PF(2tJ)    =   U(JJ) 

83 PF(3,J)   ■  BETA« JJ)*U( J J) **2/(2. *XI C J J )) 
XJET   *   X< JJET)*( X( JJET+1)-X< JJET))*<XCJET-XC<JJET))/ g 

$   ( XC(JJET*1)-XCCJJET)) £ 
XJET   =   XJET/CHORD 
EPS  «   0. 



c 
c 
c 

TVC   -   0. 
ETAET   =   100* 
NPRNT   =   0 
LAM   =   1 
JMAX   =   NEPS 
JMIN   =   JTOP+1 
CALL   BLAYER 
LAM   =   1 
JMAX   =   JTOP 
JMIN   =   1 
CALL   BLAYER 

CALCULATE    WALL 

90 
900 
901 
902 
903 
904 

905 
906 
907 
9C» 
9 09 
911 
912 

JE T  F LOW 

STFT(l)    = 
STFT(2)   - 
STFT<3)   = 
STFTC4)   = 
STFT(5)   = 
STFT(6)   = 
STFTC7)   ■ 
00   90   J=l 
STFT(6)   = 
PRINT   912^ 
CALL   WALJGT 
CONTINUE 
FORMAT   ( 1HI) 

<I6,4E20.8> 

SLOTT 
REC 
PF(2jl) 
U-PF<2,1)**2 
XI ( JJET) 
UTSIG-UTSIN 
XJET 

,NWJI T 
STFT(6)*UTSl N 

FORMAT 
FORMAT 
FORMAT 
FORMAT 

$E16.8,6X,7HYSTAG =iE16.8) 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
STOP 
END 

1HU,19X,2HCP ) 

(I6,3E20.8) 
(I6,E20.8) 
(6X,4HCL   = ,F6.3,6X »7HALPHA  = ,F6.2,8H   DEGREES , 6X, 7HXSTAG 
X,7HYSTAG    =,E16.8) 
( //7H      P0INT,7X,3HPHI ,14X,1HX,19X,1HY,19X, 
(I 6,5X,F7.2,4E20.8) 
( 100X,14HP0TENTIAL  FLOW) 
(F6.3,F6.2,E10.3,I3> 
<F9.6,F6.3,I4,I4,I2,I2> 
(F7.3,F8,5,F6.3,F7.4,F6.2,I3,I2) 
<1H1,19H   WALL   JET   ITERATION,14) 

I 



. 

SUBROUTINE   BODY   (CHORD tTH I CKtCAMBt NBPTS, BT, RL E, RT E) 
COMMON/HBDBBO/XXKOO)fYY(403) 
KINO   AIRFOIL 
Cl   ■   .5*CH0RD 
C2   =   Cl*THICK 
Nl   =   NBPTS/2 > ^.I- 
DTHET   =   3.141593/N1 . _^      Tbr 
A   —   •065 
RTE   =   C1*THICK**2 K\XLSL- 
JTE   =   0 
XX{ 1)   =   CUA 
XX(NU1I    =   -Cl + A 
YY( I)   ■   0. 
YY(N1*1)    =   0. 
DO   1   J=2,N1 
JJ   =   NBPTS+2-J 
G   =   (J-l)*DTHET 
XX(J)   =   A*C1*C0S(G) 
YY( J>   =  C2*SIN(G) 
XX(JJ)    =   XX(J) 
YY( JJI   =   -YY( J) 
IF   (JTE   .EQ.   0   .AND.   XX(J)    .LT.   6.815)   JTE=J-1 
CONTINUE 
IF   ( JTE   .LT.   2)   GO   TO  3 
RTE   «   .5525 
CHORD   =  CHORD-.01 
XX(1)   =   7.3675 
DTHET   =   1.57C796/CJTE-1) 
DO   2  J = 2,JTE ^,(     ^ ^ , /     ,   . ^   // 
jj = NBPTS*2-J CWor^e^—    |<h (<>2$ 
G   =   (J-1)*DTHET A 
XX(J)   -   6.815*RTE*C0S(G) 
YY(J)   =  RTE*SIN(G) CU ol   ^   {+%t 
XX(JJ)   =   XX(J) 
YY(JJ)    =   -YY(J) Cl. =- 
RLE   =   C1*THICK**2/12. 
RTE   =   RTE/12. 
CHORD   =   CHORD/12. 
DO   4  J=l,NBPTS 
XX(J)   =   XXUl/12. 
YY(J)   *   YY(J)/12. 
BT  »   .25*<CH0R0-.5*(RLE*RTE)) 
RETURN 
END 

^ 

yp 



SUBROUTINE    SLOPE    ( XLUXUL tX A ,YPU , YPL) 
X   =   .5*( XUL-XLL) *XA*.5*(XUL«-XLL) 
KINO   AIRFOIL 
X   =   12.*X 
IF   { X   .GE.   6.815)   GO   TO   1 
XS   =   X-.065 
SR   =  ABS< 2.13R90625-.04*XS**2) 
SR   =   SR**.5 
YPL   =   .04*XS/SR 
YPU   =   -YPL 
RETURN 
XS   =   X-6.815 
SR   =   ABS< .30525625-XS**2) 
SR   =   SR**.5 
YPL   =   XS/SR 
YPU  =   -YPL 
RETURN 
END 

^  t. VT 



SUBROUTINE   BUYER 
DIMENSION  E(5,241) .B(24l ,4) ,Y(241),C(81),G(2,241) 
C0MM0N/BLSLBL/E0V(5.241) .NBL.NEDGE 
COMMON/HBDBMB/XI (100) ,BETA(100) ,UE(I 00), FW (100 ),CPHI (100 ) ,R*C( 100) 

$,CF( 100) ,XC( 100) ,YC(100) ,X(100) , CHORD,EPS ,TVC,REC,NT » AK, Hif ETAET, 
$LAM,NPRNT,JMAX.JMIN,JJET,JSEPP 

COMMON/HBDBEB/A(5,241),D(60),ETA(24l) 
C0MM0N/HBDBMP/U(241,4),F(2,241),H(241) 
COMMON   P(4.241) 
DOUBLE   PRECISION   A ,E ,P ,U ,B,Y ,ETA, H,C ,D, F ,G 
PRINT   900 

2 

JCOUNT   =   0 
D(l)   =   EPS 
D( 2)   -   TVC 
D( 3)   =   REC 
D( 4)    ■   0(3)**.5 
D( 5)    =   D( 3)**.25 
D(40)   =   0. 
D(47)   =   CHORD 
CALL   PROFLE 
JU   =   1 
JL   =   1 
D( 8)   =   0. 
0(9)   =   0. 
D( 10)   =   0. 
D( 11)   =   0. 
DC 16)   =   0. 
D( 17)   ■   1. 
D(39)   =   0. 
GO   TO   2 
JU   =   JMAX 
JL   =   JMIN 
DO   99   JPT   =   JL.JU 
JCOUNT   =   JCOUNUl 
IF   (JCOUNT   .NE.    1)   GO   TO 
IF   (LAM   .EQ.   0)   GO   TO  4 

N   =   241 
LU   =   N-2 
D(6)   =   6. 
D(7)   =  D(6)/(N-1) 
DO   3   J=i,N 
H(J)   =   D(7) 
ETA( J)   =  ( J-l)*0(7) 
C(1)   =   I. 

10 

S 
GO   TO   6 



N   =   NT 
LU   =   N 
C( 1)    ■ 
D(6)   = 
0( 7)   = 
ETA(1) 
ETA(2) 
H( 1)   = 
H( 2)    = 
C(2)    = 
00   5   J 
C( 2)   = 
ETA( J) 
H( J 
C(2 
C<3 
C<4) 
C< 5)   = 
C< 6)   = 
C< 7)   = 
C< 8)   = 
C(9)   = 
C( 10) 
C( 11) 
C( 12) 
C< 13) 
C( 14) 
C( 15) 
C( 16) 
C( 17) 
C( 18) 
C( 19) 
C<20) 
C( 21) 
C(22) 

$ C( 
CC23) 
C<24) 
C(25) 
C(26) 
C( 27) 
C(28) 
C<29) 
C( 30) 
C( 31) 

-2 
AK 
ETAET 
HI 
=   0. 
=   D(7) 
HI 
C(1)*H1 
C( 1) 

= 3.N 
C(2>*C<1) 
=  D(7)*(C(2)-l.)/<C<i)-l.) 

=  C( 1)*H( J-l) 
=   C( 1)**2 
=  C( 1I*C<2) 
=   C( 1)*C<3) 
=   C(1)*C<4) 
=   C(1)*C(5) 
=   1.*C<1) 
=  C(7)+CC2> 
■   C( 8)*C(3) 

=   l./(C(7)*C(8)*C<9)) 
=   -1. /(C(7)*CI8)*C(3I) 
=   l./(C(7)**2*C<5)) 
=   -l./(C(7)*C(8)*C(6)) 
=   l./(C(7)*C(8)*C(9)*CC6)) 
=  CI10I/CI 14) 
=  C(ll)/C<14> 
=  C(12)/C(14) 
=   C(13)/C(14) 
=   C(18)*C(9)/C(8) 
=  :<17)*C<9)/C(7) 
=  C(16)*C(9) 
=   C(3)*C<7)*C<8)   «»   C(2I*C(7)*C<9) 
7)*C(8I*C(9) 
= C(18)*C(7) *C(8)*C<9)/C<22) 
= :(17)*C(1)*C(8)*C(9)/C(22) 
= C< 16)*C<2)*C(7)*C<9) /C(22) 
=  C(15)*C<3)*C(7)*C<8)/C<22) 
= 6«*fcm+cm-cc2i) 
=  2.*C(1)*(C<7)-C(7)*C(1)-C<2) ) 
=  -C(3)*C<71 
=  6.*(C(7)*Cm-C(2)*CC7M 
=   2.*Cf l)*C(7)*(l.-C(l)*C(7)-C!2M 

♦   C<1>*C<8)*C<9)   ♦ 



c 
c 
c 

$ 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

£ 
c 
c 

32) 
33) 
34) 
C(3) 
35) 
36) 
37) 
38) 
39) 
40) 
41) 
42) 
43) 
44) 
45) 
46) 
C(7) 
47) 
48) 
49) 
50) 
51) 
52) 
53) 
54) 
55) 
56) 
57) 
58) 
59) 
60) 
61) 
62) 
63) 
64) 
65) 
66) 
67) 
68) 
69) 
70) 

73) 
74) 

=  -C(3)*C( 7)**2 
=   6.*(C(7)+Cm-C(2)-C(2)*C(7)l 
=  2.*C( 1)* 
*C(7)   -   C(2)*C(7)   -  C(2)    -  CU)*C<7)**2   -   C(1)*CC7I   «■  C<7>) 
=   Cf3)*C47)*CCC2)   ♦   C(i)*C(7)    -   C<7)   -   1.1 
■ 6.*<C(7)   -   C(2)   -   C(2)*C<7I) 
=  2.*C(2)*C(7)*(C(2)-C<7)-1.) 
- :<4)*C<7)**2 
=   6.*C<1)*(1.-C(1)-C(1)*C(7)I 
=   2.*C(3)*<C(1)*C<7)-C<7)-1.) 
=  C(5)*C(7) 
=   6.*(C(8)+Cm*Cm+C(2)) 
=   2.*C(l)*(Cm*C(8)+C(8)*C(l)+C(7)*CC2)) 
=  C(3)*C(7)*C<8) 
=   6,*(C(8)*C<1) *C(7)*C(2)-C<3) ) 

*C<8)   ♦   C(8)*C(1)   -   CC8)*CI2I    ♦   C<7)*C(2)   -   C ( 7 |*C ( 3)-C( 4) ) 
«   -C(3)*(C(3)*C(7)^C(2)*C<8)*C(1)*C<7)*C(8)-CC7)*C(8)) 
= 6.*(cm+cm*cm-c<3)i 
=   2.*C(1)*(C<7)*C<8>-C(2)*C<8)-C<7)*C<3)) 
- -C(4)*C<7)*C(8) 
=   6.*«C<8) +   C(2)-C(3I) 
=   2.*C<2)*CC(8)-C(8)*C(1)-C(3I) 
=   -C(5)*C<8) 
=   6.*C(l)*(CI7)*Cm-C(2)) 
■ 2.*C(3)*(C(7)-C(1)*C(7)-C(2I) 
=   -C(6)*C(7) 
=  C(iO)*(C<7)*C(8)*C(9 )   ♦   C(8)*C(9)   ♦   C<7>*C<9)   ♦   C(7)*C<8)) 
=  C(11)*C(7)*C(8)*C<9> 

C<12)*C(8)*C(9) 
CU3)*C<7) *C(9) 
C< 14)*C(7)*C<8) 
-CliO)*CI3l*Cm*C!8l 
C(11)*C(2)*<-C(l)*C(7)*C<8l 
CU2)*C<2)*Ct7)*C<8) 
C(13)*C<2)*C(8) 
:<14)»C<2)*C<7) 
C<3)*C<7) 
C(10)*C(2) 
:CLL)*C(L)*C(7) 
:C12)*tCC2) + CU)*C<7)-CC7)-l.) 

-C(lol*C(3)*C(7) 
-C( 11)*C(2)*C(8) 
-CC12)*Cm*CC7)*C(8) 

♦   C(7)*CC8)   ♦  C(8)   ♦   C<7)) 



10 

C( 751   =   -C(13)*CC(3)*C(7)+C(2)*C(8)*C<I)*C(7)*C(8)-C(7)*C(8)) 
C( 76)    =   C( 14)*C(7)*C(8) 
C(77)   =  C(10)*C(3)*C(7)*CC8) 
C(78)   =   C( 11)*C(2)*C(7)*C(9) 
C(79)   =   CU2)*C(i)*CC8)*C(9) 
C(80)   =  C( 13)*C(7)*C<8) *C(9) 
C(81)   =  C<14)*(C(3)*C(7)*C(8)   ♦   C(2)*C(7|*C(9)    ♦   C(1)*C(8)*C(9) 

I C(7)*C(8)*C(9)) 
DO   7   J=lfN 
G(l* J)   =   0. 
G( 2,J)   =   0, 
IF   (LAM   .EQ. 
DO   8   J=1,N 
F( 1, J)   =   0. 
F(2,J>   =   0. 
GO   TO   10 
CONTINUE 
CALL   PTURB   ( N) 
IF   ( JU   .EQ,    1) 
LU   =   JPT 

=   JPT-1 
=   JPT-2 
(JPT   .GT. 
(LL   .GE 

12 

13 

14 

15 

0)   GO   TO  9 

30   TO  16 

LM 
LL 
IF 
IF 
IF   (LM 
D( 8)   = 
D( 9)   = 
D( 10) 
GO   TO 

JL 
JL) 

•EQ.   JL) 
l./XKJL) 
-D( 8) 

■   0. 
15 

.AND. 
GO TO 
GO   TO 

JCOUNT 
13 
12 

.EQ.   1)   GO  TO   14 

D(8)   =   l./( XI( JL+1I-XK JLII + L/XMJL+L) 
D(9)   =   -XH JL + l)/XI(JU/(XI(Jl*l)-XIUU) 
D( 10)   =   CXI( JL+l)-XI(jm/XICJU/XI(JL + l) 
GO   TO   15 
D( 8)   =   l./(XI(LU)-XI(LM))*i./(XI(LU)-XI(LL)) 
D(9)    =   -( XI(LU)-XI(LL))/(XI<LU)-XI(LM))/(XI(LM)-XI(LD) 
D( 10)   ■   ( XI(LU)-XHLM))/(XI(LM)-XICLL))/ (X I ( LU )-X I ( LL ) ) 
GO   TO   15 

( 8)   =   l./(XI(LU)-XI(LM)) 
D( 
D( 
D( 
D( 
D( 
DC 
D( 

10) 
lli 12) 
13) 
14) 
15) 

-D(8) 
0. 
XI(JPT) 
(2.*D(ll)>**.5 
UE(JPT) 
:PHI(JPT) 
RWCC JPT) 

o 



D( 16) 
0( 17) 
0( 39) 
IF   (0( 
0( 39) 
LU  =   N-2 

16   DO   40   JIT   = 
TOL   =   .0001 
IF   (JIT   .GE. 
IF   ( LAM   .EQ. 
JPR   =   JIT 
00   17   J*1,N 

=   2.*D( 1)*D(2)*D(12)*D(14)/DU5)**2/D(13)/D<4) 
=  BETA(JPT) 
=  D(15) 
1)   .LT.   .5)   D(39)   =   1. 
=   -0(12)/D(4)/D(13)/D(39) 

1 ,20 

10)    TOL   =   .001 
0   .ANO.    JCOUNT .EQ.    1)    TOL   =    .015 

18 

19 
22 

23 

1.   ♦   D(16)*ETA( J) 
D( 16)   ♦   P(1,J)   ♦   ETA(J) 
-D(17)*CP(2,J)*2.)    -  2.*D(11)*D(8)*(P(2,J)+1.) 
2.*D( 11)*P(3, J)*D(8) 
-(EC3,J)*P<2vJ)+E<tf J)*P(LtJ>)    ♦   2.*D(il)*((P(2,J)*l.)* 
tJIOC 10>*G(2, J))-P(3,J)*(0(9)*F(1,J)«-D(10)*G( 1,J)) ) 

1)   GO   TO  22 

t J) 

!J) 

IF (LAM .EQ. 
DO 18 J=1.N 
A( 1,J) = P(1 
A(4,J) = P(2 
A(2,J) = P(3. 
A( 3, J) = P(4,J> 
CALL EODIE (N) 
DO 19 J»1,N 

J)   =   l.fAll ,J) 
=   E(1,J)*(1.*AC1,J)) 
=   EC2t J)*DC16)*A(1 ,J)*A(2,J)*(1.*D(16)*ETA<JI) 

J = 1.N 
E( 5,J)-(E(1 ,J)*PK,J)*E(2,J)*PC3tJ)) 
E(2,J)/E(1,J) 
E(3,J)/E(1 ,J> 

EDV( 5, 
ECltJl 
E(2,J) 
DO 23 
E(5,J) 

2,J) 
3,J) 
4,J) 
5,J) 
1,2) 
1,2) 
3 
1 

E( 
E( 
E( 
E( 
A 
A( 
A( 
A( 

»2)   = 

A(2,N) 
A(3,N) 
A(4fN) 
D( 18) 
0(19) 
D(20) 

E(4,J)/E(1,J) 
=  E( 5,J)/E(1,J) 
=   C(19) 

CC20) 
C(21) 
C(23) 
C(24) 

=  C(25) 
=  C(26) 

=  E(2,N-l)*H(N-4) 
=   E(3,N-i)*H(N-4)**2 
=   C(42)+D(18)*CU3)+D(19)*C(44) 



24 

25 

A( 
I 
A( 
A( 
A( 
A( 
DO 
0( 
DC 
D( 
D( 
A( 
A( 

A( 
A( 
A( 
U( 
U( 
U( 
U( 
B( 
U( 
U( 
U( 
B( 
B< 
U< 
U< 
U( 
DO 
B( 
B( 
U( 
U( 
U( 
B( 
B( 
B( 
U( 
U( 
B( 
B( 
B( 
B( 

ltN-ll 
♦ E 

2,N-1) 
3,N-1) 
4,N-1) 
5.N-1) 

24   J = 
18) 
19) 
20) 
21) 

J) 
J) 

♦E 
J) 
J) 
J) 
1) 

11 
4) 
1) 
1) 

§ 
2) 
1) 
II 
2) 

13> 25 
2) 
1) 
1) 
2) 
3) 

N-i, 
N-1,2) 
N-1,1) 
N-1,1) 
N-1,2) 
N,4) = 
N,3) = 
N,2) = 
N,l)   * 

=  C(18)*(C(45)*D(18)*C(46)+D(19 
(4tN-l)*H(N-4>**3/C(i4)/D(20) 

=   C(17) *(C(48)«-D(18)*C(49)«-D<19 
=  C(16)*{C(51)+D(18)*C(52)*D(19 
=  C(15) *(C(54) + D(18)*C(55)*0U9 
«  E(5,N-l)*H(N-4)**3/C(14)/D<20 

3,LU 
E(2,J)*H( J-2) 
E(3,J)*H< J-2)**2 
C(27)*D(18>*C(28)*D(19)*C(29) 
H(J-2)**3 
CC18)*(C(30)+DC18)*C(31)+D(19)* 
C( 17)*(C(33)*D(18)*C(34)*D(19>* 

(4,J)*D(21)/C(14)/D(20) 
C(16)*(CC36)+D(18)*C(37)+D(19)* 
C(15)*(C(39)+D(18)*C(40)+D(19)* 
E(5, J)*D<21)/C(14)/D(20) 
A(3«2) 
A(2,2) 
A(l ,2) 
1. 
AC3,3)/UI2,1) 
A(2t3)-B(3,l)*U(2,2) 
A(1,3)-B(3,1>*U(2,3) 
l.-BC3,l) 
A(4,4)/U(2,ll 
(A(3,4)-B(4,2)*U(2,2))/U(3.i> 
A(2,4)-B(4,2)*U(2,3)-B(4,1)*U(3 
A( lf4)-B(4,2)-B<4,l)*U(3,3) 
1. 

5.LU 
A(4,J)/U( J-2,1) 
(A(3.J)-B( J,2)*U( J-2f2))/UU-l, 
A(2,J)-B( J,2)*U( J-2 ,3)-BU,i)*U 
AC1tJ)-BfJtl) 
1. 

A(4,N-1)/U(N-4,1) 
»   (A(3,N-il-B(N-lf3)*U(N-4,2))/ 
*   (A(2,N-1)-B(N-1 ,3)-B(N-l,2)*U 
«  A(i,N-n-B(N-l,2)-B(N-l,l)*U( 
=   l.-BCN-lvl) 
A(4.N)/U(N-4,1) 
(A(3tN)-B(N,4)*U(N-4,2))/U(N-3. 
(A(2,N)-B(N,4)-B(N,3)*U(N-3,2)> 
(A(l,N)-B(N,3)-B(N,2)*U(N-2,2)) 

)*C(47))/D(20) 

)*C(50))/D(20) 
)*C(53)t/D(20) 
)*C(56)I/D(20) 
) 

C(32))/D(20) 
C(35))/D(20) 

C(38))/D(20) 
C(41))/D(20) 

J = 

3)    = 

2) 

1) 
(J-1,2) 

UCN-3.1) 
(N-3,2))/U(N-2,l) 
N-2.21 

1) 
/U(N-2,1) 
/IMN-I»li 

ho 



U(N,1)   =   l.-B(N,2)-B(N,l)*U(N-l,2) 
Y( 2)   =   0. 
Y( 3)   =   A(5t3) 
00   26   J=4,LU 

26   Y(J)    =   A(5,J)   -   B( J.2)*Y( J-2)    -   B( 
Y(N-l)   =   A( 5,N-l)-B(N-l ,3>*Y(N-4)- 
Y(N)    =   -B(N,4)*Y(N-4) -B(N,3) *Y ( N-3 
A( 1,N)    =   Y( NI/UCN.l) 
A(1,N-1)    =   (Y(N-l)-U(N-i ,2)*A(1,N) 
00 21   J=*,LU 
1 =   LU+4-J 

27A(1,I)   =   (Y(I)-A(l,I+2)-UU ,2)*A(1 
A(l,3)   =   ( Y(3)-U(3,3) *A(1 ,5)-U(3,2 
A(lf2)   =   ( Y(2)-A(l,5)-U(2,3) *A(1 ,<► 
A( 1,1)    =   0. 
DO   28   J=2,3 
K   =   J-l 
A(J.l) = -(C(57)*A(K,l)+C(58)*A(Kf 

$      *C(61)*A(K,5))/H(l) 
A(J,2) = (C(62)*A(K,1)+C(63)*A(K,2 

$      +C(66)*A< Kf5) ) /HID 

J,1)*Y(J-1) 
B(N-1,2)*Y(N-3)-B(N-l.l)*Y(N-2) 
)-B(N, 2)*Y(N-2)-B(N,1)*Y(N-1) 

l/UCN-Lfll 

,1*1) )/U(I,l) 
)*A<1,4) )/U(3.1) 
)-U(2,2)*A(l,3))/U(2,U 

2)*C(59)*A(K,3)*C(60>*A(K,4) 

)+C(6*)*A(K,3)«-C(65)*A(K,4) 

A(J,N-l)    =  C<3)*(C(72)*A(KfN-<f)*C(73)*A<K,N-3)*C(74)*A(KfN-2) 
N-4) 
)*A{KfN-3)*C(79)*A(K,N-2) 
N-4) 

A( 

(69)*A(K. JJ-11«-C(70)*A(K, JJ) 
)/H(JJ-2) 

+C(75i*A(K*N-l)+C(76)*A(K.N)f7H< 
J.N)    ■   C(3)*(C(77>*A(K,N-<*)«»C(78 
♦C( 80)*A(K,N-1)*C(81)*A(K,N))/H( 

00   28   JJ=3.LU 
28 A(J,JJ)    =   C(67)*(C(681*A(K,JJ-2)*C 

$      K(71)*A( K,JJ+l)-C(Lt)*A(KfJJ+2) 

29 A(4.J)    =   ff(5,J)-E(2,J) *A(3,J)-E(3,J)*A(2,J)-E(4,J)*A(1,J ) 
IF   (LAM   .EQ.   1)   GO   TO  31 
IF   (JIT   .GT.   1)   GO  TO  31 
00   30  J=l,N 
A( 1,J)   =   .5*A(1,J) 
A(2,J)    =   .5*A(2,J) 
A( 3,J)    =   .5*A(3,J) 
A(4,J)    =   .5*A(4,J1 
IF   (JU   .EQ.   1)   GO   TO   32 
0( 22)   =   FW( JPT) 
P( 1,1)    =   D(22) 
00   33   J=1,N 
P( L,JI   =   P(1,J)*A(1,J) 
P( 2,J)   *   P(2tJr*A(2vJl 
P( 3,J)    =   P(3,J)*A(3,J) 

33  P( 4,J)   =   P(4,J) + A(*vJ) 

30 
31 

32 



34 

35 

36 
37 

IF 
IF 
IF 
00 
IF 
IF 

(P(3,l)   .LE. 
<P(3.i)    .LE. 
(P(3,l)    .LE. 
34   J = 2,N 
(P(2,J)    .GT. 

0.)    JSEPP=JPT 
0.)    PRINT   906,JPT 
0.1   GO  TO  104 

(P(2,J-l) 
JSAVE   =   J 
GO   TO   37 
JLOW   =   JSAVE + 1 
00   36   J=JLOWfN 

0. )   GO   TO 
.GT.   P(2,J)) 

35 
GO TO  35 

P(l 
0. 
0. 
0. 

.JSAVE) 

38 

39 

20 

P(lfJ)   = 
P(2,J)   = 
P( 3,J)   = 
P(4,J)   = 
CONTINUE 
0(23)   =   (2.*A(3,l))/C2.*P(3,l)-A(3,i) ) 
DFW   =   0(23) 
OFW   =   ABS(OFW) 
JPRNT   =   JIT 
DOS   =   0. 
IF   (LAM   .EQ.   1)   GO   TO  2i 
IF   (D(2)   .GT.   .5)   GO   TO  38 
0(24)   =  D(39)*(P(l,N)-P(l ,1)) 

20 
=   0. 
J=2,N 
=   D(24>   +   .5*D<39)*H( J-l)*(P<2,J)*P(2,J-l))/ 

GO TO 
0( 24) 
00 39 
0(24) 

$(l.+.5*0( 16)*(ETA(J)*ETA(J-l))) 
0(40)   =   (D(24)-D(40))/0(24) 
DOS  =   D(40) 
DOS   =   ABS(DDS) 
0(40)   =   0(24) 

21    IF   OFW   .LT.   TOL   . ANO.    OOS   .LT.   TOD   GO   TO   41 
40 CONTINUE 
41 IF   (JU   .EQ.    1)   GO   TO  48 

D(24)   =   1. 
IF   (D(l)   .GT.   .5)   0(24)    =   RWC(JPT) 
0(24)   =   2.*D(24)*P(3 ,1)/D(4)/D(12) 
CF(JPT)   =  D(24) 
DO   42   J=ltN 
JM   =   J 
IF   (P(2,J)   .GT.   -.005)   GO  TO 43 

42 CONTINUE 
43 IF   (0(1)   .GT.   .5)   GO   TO  44 

0( 41)   =   -D(39)*ETA< JH) 



D(42) =   D(39)*(P(1,JM)-P(1,1)) 
GO   TO 46 

44 0(41) = 0. 
0(42) - 0. 
DO   45 J=2,JM 
0(43) =   (ETAt JI-ETAU-in/(l.«-.5*Dtl6l*IETAtJ)«-ETACJ-im**.5 
D( 41) =   }(41U0(43) 

45 0(42) «   D(42)   ♦   . 5*( P (2 , J) *P (2 , J-l) ) *D(43 ) 
D(41) =   -D(39)*D(41> 
0( 42) =  0( 39)*0(42) 

46 D(43) ■   0. 

47D(43)    ="0^43)   ♦   . 5*( ETA( J) -ETA( J-l) ) * ( P ( 2, J ) «-P ( 2, J- 1) )* C 1 .♦. 5* 
$      (P(2»J)*P(2,J-1)))/(1.*.5*D(16)*(ETA(J)*ETA(J-1)))**.5 
0(43)   =   D(39)*D(43) 

'      0(44)   =   D(42)/D(43) 
0(45)   =   D(3)*D(13)*D(42) 
0(46)   *  D(3)*D(13)*D(43) 

PRINT   901, JPT*, X( JPT) ,XI ( JPT) ,BET A( JPT) ,UE( JPT ) ,X C< JPT ), YC (JPT ) 
PI   =   12.*D(41)*D(47) 
?2   =   12.*D( 42)*0(47> 
P3   ■   12.*D(43)*D(47) 
P4   =   CF(JPT) 
P5   =   D(44) 
PRINT   902,Pl,P2,P3,P4,P5 
PI   =   0(3) 
P2   =   0(45) 
P3   =   D(46) 
PRINT   903,JPR.DFW,DDS,P1 ,P2,P3 
PI   =   P(3,l) 
IF   (NPRNT   • £<)•   01    PRINT   909,JMfPl 
GO   TO   50 

48   PRINT   904,JPR,DFW 
DO   49   J=lfN 
FC ltJ)   ■  I (1,J) 

49 F(2,J)   =   P(2,J) 
50 IF   (NPRNT  .EQ.   0)   GO   TO  52 

PRINT   905 
DO   51   J=1,N,10 
PI   *   ETA(J) 
92   =   PClf J)   •   ETA( J) M 
P3   =   P(2,J)   ♦   1. ft 
P4   =   P(3,J) ^ 
P5  =   P(4,J) 



51 
52 

53 
54 

55 

.J) 4 

PRINT   908,PI ,P2,P3,P4,P5 
IF   ( JU   .EQ.    1)   SO   TO  99 
IF   (JPT   .EQ.    JJET)   GO  TO  101 JET 
DO   53   J=1,N 
G(1,J)   =  F(l 
G(2,J>   *   F(2 
F( l,J)    =   P(1 
F(2,J)   =   P(2 . 
IF   (LAM   .EQ.    1)   GO   TO  55 
GO   TO   99 
IF   (P(3,1)    .GT.    .2)   GO   TO   60 
IF   (0(46)   .LT.    125.)   GO   TO  99 
IF   (JPT   .EQ.   JU)   GO   TO  99 
0(48)   =   -.001371*0(46)*.0817 
0(49)   =   D(47)*(UE<JPT*1)-UE(JPT))/(X(JPT + 1)-X(JPTI I 
0(49)   =   D(3)*D(43)**2*0(49) 
IF   (D(49)   .LT.   0(48))   GO   TO  60 
LAM   =   0 
JCOUNT  =   0 
PRINT   911 
GO   TO   99 
D(48)   =   640. 
IF   (BETA( JPT) 
IF   (D(46)    .LT. 
LAM   =   0 
JCOUNT   =   0 
PRINT   907,JPT 
CONTINUE 
IF   (JU   .EQ.    1) 
CONTINUE 
GO   TO   104 
00   102   J=1,N 
E0V( 1,J)    = 
EDV(2,J)   = 
E0V(3,J)   = 
EDV(4,J)    = 
NBL   =   NT 
NEOGE   »   JM 
CONTINUE 
FORMAT   (1H1) 
FORMAT   (//,6H   POINT,I 3,IX,3HX   = , E15.8,2X,4HX I   «»E14.7.2X,6HBETA   =, 

SE12.5.2X.4HUE    =.E 14. 7 ,2X ,4HXC   = , E14.7 ,2X ,4HY C  =.E14.7) 
902 FORMAT   (10X,7HDELTA   =,F8.4.3H   IN,2X,7H0ELST   =,F8.4,3H   IN,2X, 

$7HTHETA   = ,F8.4,3H   IN,2X,4HCF   =,E14.7,2X.3HH   *,E14.7) 
903 FORMAT   (1 OX,9HITERATION,I 3,8X,5H0FW   =,E13.6,2X,5HDDS   =,E13.6,2X, 

60 

99 

100 

101 

102 

104 
900 
901 

LT.   0.)   D(48)    =  320. 
D(48))   GO   TO  99 

GO   TO   1 

ETA( J) 
P(1,J)*ETA( J) 
P(2,J)U. 
P(3,J) 

E 



S5HREC   = fE13<.6,2X,6HREDS   = ,El 2.5,2X,5 HRET   =,E13.6) 
904 FORMAT   (18H    STAGNATION   POINT:,5X,9HITERATION,13.5X,5HDFW   = ,E13.6) 
905 FORMA T( /, il X ,3HE TA tl 9X , IMF f 19X.2HF» ,17X,3HF» SitXf4HF'»» ) 
906 FORMAT   (/,35H   BOUNDARY   LAYER   SEPARATION   AT   POINT,16) 
907 FORMAT   (/,20H   TRANSITION   AT   POI NT, 16) 
908 FORMAT   (5E20.7) 
909 FORMAT   (10X,7HNEOGE   =,I <* ,9X ,6HFW» •    =,E12.5) 
Qll   FORMAT!/54H    »SHORT   BUBBLE»   LAMINAR  SEPARATION:   TRANSITION   ASSUMED) 
912   FORMAT   (5E15.7) 

RETURN 
END 



SUBROUTINE   PROFLE 
COMMON   P(4.241) m   m 
OOUBLE   PRECISION   P ,E TAE ,E TAD ,ET A,ET f Cl • C2 , C3, C4, C5, C6, H 
N   =   241 
ETAE   =   6. 
ETAD   =   3. 
Cl   =   4./ETAD 
C2   =   12./ETAD**2 
C6   =   -.2*ETAD 
H   =  ETAE/(N-1) 
DO   2   J=1,N 
ETA   =   <J-1)*H 
IF   (ETA   .GT.   ETAD)   GO   TO   1 

=   ETA/ETAD 
=   ET**2 
=   ET**3 
■   ET**4 

ItJ) 

ET 
C3 
C4 
C5 
P( 
P(2,J) 
P( 3,J)   = 
P(4,J)    = 
GO   TO   2 
P(ltJ)   = 
P(2tJ)   = 
P13.J)   = 
PC4.J)    = 
CONTINUE 
RETURN 
END 

ETA*(-. 2*C5*C4-2.*C3*2. *ET-K ) 
-C5+4. *C4-6. *C3«-4.*ET-l . 
C1*(-C4*3,*C3-3.*ET+1.) 
C2*(-C3*2,*ET-1.) 

C6 
0. 
0. 
0. 

s 



SUBROUTINE   PTURB   ( N) 
DIMENSION   D( 7) 
COMMON   P(4,241> 
COMMON/HBDBMP/UI241,4) fF ( 2 .241) ,H < 241) 
DOUBLE   PRECISION   P.U.F.H.D 
JL f 
0( 1) 
D( 2) 
0( 3) 
DO 3 
0( 3) 
JS * 
D(7) 
IF 
DO 

1 
6. 

=   6./240. 
=   0. 
J=2,N 
=   D<3)   ♦   HI 
J 
=   P(l.J-l) 

(D( 3)   .GT.   6.) 
1   JJ=JL.N 

J-i) 

GO   TO  4 

JM   =   JJ 
DC 4)   =   ( JJ-1)*0<2) 
D(5}   =   JJ*D(2) 
IF   (D(3)   .GE.   D<4! 
CONTINUE 
0(6)   =   CD(3)-D(4))/(D(5)-Di4)) 
JL   =   JM 
IF   (JL   .GE.   241)   GO   TO 4 

AND.   D(3)   .LT.   D(5))   GO   TO   2 

1)   = U( J,_ 
U(J.2)   = 
U( J.3)   = 
U(J,4)   * 
CONTINUE 
DO   5   J=JSfN 

P(L«JL)+D(6)*(P(ltJL+ll-PClfJL>) 
P<2.JL)*D<6)*(P(2.JL«-1)-P<2.JL) ) 
P(3, JL)*D<6)*(P<3.JL*1)-P(3,JL)) 
P(4,JL)*D(6)*(P(4,JL«-1)-P<4,JL)) 

U(J.l) 
U( J,2) 
U( J,3) 
U( J.4) 
F( 1.1) 
F(2,l) 
DO   6   J=2,N 

D(7) 
0. 
0. 
0. 
P( 
P( 

UJJ ■ 
2,J) - 
3,J - 
4,J) = 
UJ) » 

P( 
P( 
P( 
P( 
F( _ 
F<2,J)   » 
RETURN 
END 

U( 
U( 
U( 

»1) 
til 
ti) 

J,3) 
U( J.4) 
P(liJ) 
P(2tJ) 



SLBROl 
COMMON 
DOUBLE 
2D   OR 
DO!) 
IF   (D( 
D(25) 
D(26) 
D( 27) 
D( 28) 
D(29) 
DO   1   J 
D(30) 
IF   (A( 
JSAVE 

!   JSAVE 
DO   3   J 
0(31) 
IF   (D( 

> A( 1»J) 
D(30) 
D( 31) 
DO   4   J 
D( 32) 
IF   (D( 
D( 32) 
D<33) 
A(4,J) 
D( 34) 
IF   (A( 
A( 5,J) 

$A( l.J) 
D(35) 
IF   (A( 

> JSAVE 
PRINT 

i  D( 36) 
DO   6   J 
D( 37) 
D( 38) 
A( 4«J) 

> A(5«J) 
A(1«1) 
A(2fl) 
A(1,2) 

TINE   EDOIE    (N) 
/HBDBEB/A( 5 ,241) «D(60) ,ETA(241 ) 
PRECI SI ON   A»D,ETA 

AS   Ul THOIT   TVC 
=  D<15) 
I)    .LT.    .5)   D(31)    -   1. 
=   .16*D(4)*0(12)/D(31) 
=  -D(5)*(D(12)/D(31))**.5/26. 
■   .0168*D(4) *D(12)/D(31) 
=   A(2»l) 
=   A(l«l) 
= 1«N 
=   A(1»J) 
4«J)    .GT. 
=   J 
=   JSAVE + 1 
= 1»N 
=   A(2»J) 
31) .LT. 

=  D(3i) 
=   (D129)-D(30))*D(27) 
=   ETA(JSAVE) 

= 1i(,28)-D(17)*ETA( J) 
32) .LT.    0.)    D(32)   =   -D(32) 
=  D(32)**.5 
=   DEXP(D(26)*ETA(J)*D(32J) 

=   D(25)*ETA(J) **2*A(1 «J 
=   2.*A(2«J)*ETA(J)*A(3,J> 
2«J)   .LT.   0.)   0(34)    =   -D 

=   D(25)*ETA( J) *(1.-D(33 

-.005)   GO   TO 2 

0.)   DC31)    =   -D(31) 

*(1.-D(33))**2 

(34) 
)*(D(34)*(1.-D(33))-2.*ETA(J)* 

*0<26)*D(32)*D(33) *(1.-.5*D(17)*ETA(J>/D(32)**2)) 
=   D(30)/(1.+5.5*(ETA(J)/D(31))**6) 
4,J)   .GT.    D(35))   GO  TO   5 
=   J + l 
10 
=   -33./DC31) 
= JSAVE.N 
=   ETA(J)/D(31) 
=   i.*5.5*D<37)**6 

=  D(30)/D(38) 
=   D(36)*D(37) **5*A(4»J)/D(38) 
=   0. 
=   0. 
=   (A(4»2)*AC4»3))/3. 

§ 



10 

A(2,2)    = <A(5,2)*A(5,3))/3. 
LU   =   N-2 
DO    7   J=3,LU 
A(1,J)   = .2*(A<4,J-2)*AK, J-1) + AU,J)*A(4.J*1)*A(4, J+21) 
A(2,J)   = .2*IA(5tJ-2)*A(5,J-U»A(5tJ)*A(5,J*l)*A(5tJ*2)) 
A( lfN-l) =  A(l,N-2) 
A(l,N)   ■ A(I.N-2) 
A(2,N-1) =   A<2,N-2) 
A(2?N)   = A(2.N-2) 
FORMAT 
RETURN 
END 

(19H   EDDIE'S   IN   TROUBLE) 

s 



SUBROUTINE    WALJET 
DIMENSION   CPWJ(5 0) ,CFWJ<5 0) .UEWJC50) .XWJ(50),DELTA(50) 
DIMENSION   ET(121)vE(<t«ttl20)«ZC4«121i«DG(4«121) 
DIMENSION   A<4,4) ,B(4 ,4 ) ,C(4,4 ) , D(4,4 ) »Q (4 ) 
CCMMON/MAINWJ/PF(3 ,25) ,NPFfSTEPS 
COMMON/JE TMIX/HS(121) «F(6 «121)«S(18) 
C0MM0N/HBDBJE/ETA(121),EPS(2«121),G<4,121),GG(7,121) 
INPUT  HERE 
CALL   SLOTBL 
JU   =   121 
S(6)   =    S(7) 
S( 8)   =    STEPS*S(1) 
ET( 1)   =   0. 
ETA(i)    *   0. 
UEP   =   S<4) 
NT   =   JU-1 
LU   =   JU 
LT   =   NT 
MXMN   -   0 
NMAX   -   50 
INPUT   INITIAL   F«G,H«CP   AND   ETA   GR 
DO   1   J*1«JU 
G( 1, J)    ■   F( 1,J) 
G(2,J)   =   F(2,J) 
G<3«J)    =   F(3,J) 
G(4.J)    =   F<4.J) 
EPSCltJI   ■   F(5,J) 
DO   2   J=2,JU 
ETA( J)    =   ETA( J-i)tHS(J) 
ET(J)   =   .5*<ETA( J)*ETA< J-lll 
REC   =   S(2) 
CS  =   S(i) 
CA   =   CS**2*REC 
CB   =   .5*CS*REC 
CPWJ( 1)   =  G(4,ll 
UEWJU)    =   S<4) 
XSLOT   =   S(6) 
XWJ< 1)   ■   S<7) 
DX  -   S<8) 
DXM   =   . 5*DX 
CFWJ(l)    =   2.*S(4)*G(3«n/(CS*REC) 
DELTA(l)    =   S(5) 
X   ■   XWJ( D-XSLOT 
CALL   RADIUS   (X,RC) 
GE   ■   CS/RC 

s 



,J-1) 

GO   TO 

AND. 
AND. 
5 

JMAX    .EQ.    1)   JMAX=J-1 
G(2,J>   .LE.   G(2»J*in   JMIN=J 

DO   3   J=1,JU 
3 GG(3,J)   =   GE/(1.+GE*ET(J)) 

Cl   =  DELTA(l)/CS 
JMAX  =   1 
JMIN   =   1 
DO   <t   J=2,NT 
IF   (G(2,J)    .LT.   G(2 
IF   <G<2.J)    .LE.   G(2 
IF   (ETA(J)    .GT.   Cl) 

4 JDEL   =   J 
5 IF   (JMAX   .EQ.   1)    JMAX=JDEL 

IF   (JMAX   .GT.    JDEL)    JMAX=JOEL 
DO   6   J = l,4 
B(3,J)   =   0. 
B(4,J)    =   0. 
C(1,J)   =   0. 

6 C(2,J)   =   0. 
NL   =   1 
NU  =   NPF-1 
Nl   =   1 

C BEGIN   SOLUTION   FOR   POINT   N 
DO   75  N=2,NMAX 

C PICK   X  FOR    STATION   N 
UEPS   »   UEP 
JGOB   =   0 
IF   (N   .LE.   3)    JG0B=1 
DXT   =   DX 
IF   (N   .EQ.   2)   DXT=CS/3. 
IF   (N   .EQ.   3)   DXT=CS 
X   =   XWJ(N-1)+DXT 
DO   7   J=NL,NU 
IF   (PF(lfJ)    .LE.   X   .AND.    PF ( 1 v J+1)    .GE.   X)   GO   TO   8 

7 Nl   =   J 
8 IF   (Nl   .GE.    NU)    N1=NU-1 

N2   =   N1U 
N3   =   N2+1 
CA = PF(1»N2)-PF(1 ,N1) 
C5 = PF(lfN3)-PF(lfNl) 
C6   =   PF(1.N3)-PF(1,N2) 

9 C7  =   X-PF(1,N1) 
C8   =   X-PF(1,N2> 
C9  *   X-PFU.N3) 
Cl   =  C8*C9/C4/C5 
C2   =   -C7*C9/C4/C6 
C3   =  C7*:8/C5/C6 



UEP   =   Cl*PF(2fNl)+C2*PF(2»N2)*C3*PF(2,N3) 
DU?P   =   Cl*PF(3,Nl)4-C2*PF(3,N2)«>C3*PF(3,N3) 
JGOB   =   JGOBU 
IF   (JGOB   .EQ.   2)   GO   TO   10 
OELU   =   ABS( UEP-UEPS) 
IF   (OELU   .LT.   .11   GO   TO   10 
DXT   =   .1*DX/DELU 
IF   (OXT   .LT.   DXM)   DXT=DXM 
X   =   XWJ(N-1)+DXT 
GO   TO   9 

10 XWJ(N)   =   X 
CO  =   3. 
Ci   =   PF(lfNlH-PF(l,N2)«-PF(lfN3l 
C2   =   PF(1 ,Nl)**2i-PF( 1.N2) **2*PF (1 , N3 ) **2 
C3   =   PF(3fNli+PF(3fN2)+PF(39N3) 
C4   =   PF( l.Nl)*PF (3.Nl)*PF(l.N2)*PF(3,N2)+PF(lf N3)*PF(3,N3) 
ODUEP   =   (C0*C4-Ci*C3)/(C0*C2-Cl**2) 
X   =   X-XSLOT 
CALL   RADIUS   (X,RC) 
GE   =   CS/RC 
00   11   J=l,JU 
GG( 1, J)   =   i.+GE*ETA( J) 
GG(5,J)   =   GG(3,J) 
GG(2,J)   =   GE/( l.*GE*ETA( J) ) 
GG(3,J)   =   GE/(1.*GE*ET( J) ) 
GG(4,J)   =   2.*GG(1.J)**2/CA/(l.*GE*ET(J)) 

11 CONTINUE 
STORE   N-l   QUANTITIES 
00   12   J=2.JU 
Cl   =   .5*(G( 19J)+G(1VJ-l)) 
C2   =   .5*(G( 2tJ)+G(2VJ-l)) 
C3  =   .5*(G(3t J)+G(3tJ-L)) 
C4  =   .5*(G(4f J)*G(4, J-l)) 
F( 1, J)   =   UEWJ(N-i) *C1 
F(2,J)   =   C2 
F( 3, J)   *  C3*GG(5,J)*C2 
F(4,J)   *   C4 

12 CONTINUE 
ADJUST  N-l   PROFILE   FOR   INITIAL   GUESS   AT   N 
ETGE   =   1.2*ETA( JDEL) 
IF   (ETGE   .GT.   ETA(JU))   ETGE=ETA(JU) 
DO   13   J«JDEL»JU £ 
LU  =   J £ 
IF   (ETA(J)    .GE.   ETGE)   GO  TO   14 

13 CONTINUE 



14  LT   =   LU-1 
DELTA(N)   =  DELTA(N-l) 
E7   =   ETGE 
IF   (JMIN   .GT.   1)   E7=l.l *ETA< JMI N) 
Ci   =   l.*GE*E7 
USOU  ■   DUEP/UEP 
C2   =   -.5*RC**2*DDUEP*ALOG <C1)**2 
UWJS   =   (UEP+C2)/C1 
IF    (MXMN   .GT.   0)   GO   TO   15 
UEWJ(N)   -   UEP 
CPE   =   l.-UEP**2 
GO   TO   18 
UEWJ( N)   ■   UWJS 
Cl   =   UEWJ(N)*G(i 
00   16   J = JMAX.JU 
IF   (F(5, J)   .GT. 
JH   =   J 
CPE   =   F(6.JM)-UEWJ(N)**2-(RC«DUEP*AL0G(GG(1,LU) )/GG(1,LJ> )**2 
Cl   =   CPE-G(4,LU> 
DO   19   J=1.LU 
G( 4,J)   =  G(4,J)*C1 
JM   =   LU+1 
IF   (JM   .GT.    JU)    JM=JU 
DO   20   J=JM,JU 

=   G(1,J-1)*HS(J)*G(2»J-1> 
=   1. 
=   0. 

20 G(4,jJ   =  CPE 
ITERATION 
IT-1,10 

15 

16 
17 
18 

19 

,LU) 

CD   GO   TO   17 

It J) 
2,J) 
3',i\ 

G( 
G( 
G( 
G(4, 
BEGIN 
DO   61 
L   =   N 
IF   (N   .EQ.   2   .AND.   IT   .EQ.    1)   L»i 
E4   =   (G(4,1)-CPWJ(N-1))/DXT 
CALL   EDDY   (CStREC,UEWJ(NJ ,E4,X,RC,E7,JMAX,JMIN,JDEL,LU,L, 
CO   =   MXMN 
DO   40   J=2»LU 
Cl   =   .5*(G< l»J)«-G(l9 J-l)) 
C2   =   .5*(G(2,J)*G(2,J-1) ) 
C3   =   .5*(G(3,J)*G(3,J-1)) 
C4   =   .5*(G(4,J)+G(4, J-ll) 
C5   =   C3*GG( 3,J)*C2 
C6   =   UEWJ(N)*C1-F(l ,J) 
C7   *   UEWJ(N) **2*C2 
C9  =   HS(J)/DXT 
CIO   =   F(4f J)*( UEViJ<N-l)*F(2. J) ) **2-C4-CUEWJ IN )*C2)**2 

IT) 

a 



C12   =   2.*HS< J)*GG(3,J)*UEWJ<N)**2*C2 
C12  =   C12*(1.-.5*CS*RC*ETGE*USDU**2) 
IF   (ETA(J)   .GT.   1.2*ET)   C12'0. 
S<1)   =   -.5*UEWJ<N)*C9*(UEWJ(N)*C5*UEWJ(N-1)*F(3.J)) 
S<2)   =   C9*(C7-.5*UEWJ(N)*GG<3,J)*C6)*UEWJ<N)*EP§(2,J)*GG<2,J ) 

S   -UEWJ(N)*EP$<2 , J) *GG(6.J) 
S(3)   =   -UEWJ(N)=M.5*C9*C6*EPS(2,J)) 
S(4)   =   .5*09 
S( 5)   =   -C12 
S( 6)   =   C9*(C7-.5*UEWJ(N) *GG ( 3 . J) *C6 ) -UEW J <N)*EPS ( 2, J- 1 )*GG< 2 , J- i ) 

S   ♦UEWJ(N)*EP$<2.J-l)*GG(6,J-l) 
St 7)   =   UEWJ(N) *<-.5*C9*C6*EPS(2,J-l) ) 
S(8)   =   -GUtJ)+G(4tJ-l)*CL2*C2 
S( 9)   =   C9*(CiO*C6*( UEWJ(N)*C5*UEWJ(N-1)*F<3, Jll)HJEWJ<N)* 

$(EPS(2,J)*(G(3,J)-GG!2.J)*G(2.J)*GG<6,J>*(G(2, J)-I.|) 
$-EPS(2tJ-l)*CGC3,J-l)-GGC2tJ-l)*G(2f J-ll*GG(6fJ-l)*IG«2t J-l)-l.m 

IF   (J   .EQ.   2)   GO   TO  25 
S( 10)   *   -G(l,J-l)«-G<l,J-2)*.5*HS(J-l)*(G(2,J-i)*G(2,J-2)) 
S(li)   =   -G(2,J-lH-G<2,J-2)+.5*HS(J-l)*CG(3,J-l)*GC3,J-2)) 

25 CONTINUE 
Cll   =   .5*HS< J-l) 
IF   (J   .GT.   2)   GO   TO   3i 
DO   26   K=l,4 
A(ltK)   =   0. 
A( 2,KI   =   0. 

26 A(4,K)   =   0. 
A( 1,1)   =   1. 
A(2,2)   =   1. 
A<4,4)   =   -1. 
A(3,1)    =   S(l) 
A( 3,2)    =   S(6) 
A(3,3)   =   S(T) 
A<3,4)   =   S<4) 
A(4.2)   =   S(5) 
00   27  K=l,4 
C( 3,K)   =  M3,K) 

27 CC4,K)    =  A(4,K) 
C(3,2)   =   S(2) 
C(3,3)   =   S( 3) 
C(4,4)   »   1. 
Q( 1)   *   0. 
Q(2)   =   0. 
Q(3)   =   S<9) 
Q( 4)   =   S( 8) 
DO   28   K=l,4 



DO   28   KK=1,4 
28 D(K,KK)   =  A(K,KK) 

CALL   INVERT   (0) 
00   29   K = i,4 
00   29   KK=1,4 

29 E(K,KK,1)    m   DC K ,1) *C ( L ,KK) *D ( K»2 ) *C<2 ,KK ) *D<K, 3 )*C< 3, KK ) 
$      +D( K,4)*C(4,KK) 

DO   30   K=l,4 
30 Z(K,1)   =   D(K,1)*Q<1) ♦ D(K,2)*Q(2)+D(K,3)*Q(3)+D(K,4)*Q<4) 

GO   TO   40 
31 DO 32 K = l,4 

A(1,K) = 0. 
A(2,K) = 0. 
A(4,K) « 0. 
B( lfK)   «   0. 

32 B( 2»K)   =   0. 
A( 1,1)    =   1. 
A( 1,2)   =   -Cll 
A( 2,2)    =   1. 
A (2,3)   =   -Cll 
A(3,1)   =   SI 1) 
A< 3,2)   =   S(6) 
A( 3,3)   =   S<7) 
A( 3,4)   =   S(4) 
A(4,2)   =   S(5) 
A<4,4)   =  -I. 
B(1,1)   =  -1. 
B(1,2)    =  -Cll 
B<2,2)   =  -1. 
B(2,3)   =   -Cll 
DO   33   K=l,4 
C( 3,K)    *  A(3,K) 

33 C(4,K)   =   A(4jK) 
C(3,2)    =   S(2) 
C( 3,3)   =   SC3) 
C(4.4)   =   1. 
Q(l)   =   S( 10) 
0( 2)   =   S(ll) 
Q(3)   =   S(9) 
Q(4)   =   S(8) 
00   34  K=i,4 
DO   34   KK=1,4 

34 0(K,KK)   =   A(K,KK)-B(Kfl)*EUtKK,J-2#-B(K,2)*E(2,KK, J-2) 
$     -8<K,3)*E(3,KK,J-2)-B<K,4)*E<4fKK, J-2) 

CALL   INVERT   (D) 



DO   35   K = l ,4 
DO   35   KK=1.4 

35 E<K,KK,J-1)    *  D( K,l) *C (1 ,KK) «-D! K,2 ) *C<2 , KK) *D(K , 3)*C(3,KK) 
$      *D( K,4)*C(4,KK) 

DO   36   K=l,4 
36 Q(KI   =   Q(K)-B(K,1) *Z (1 , J-2)-B<K,2)*Z(2,J-2)-B(K,3)*Z<3,J-2) 

$     -B(K,4) *Z(4, J-2) 
DO   37   K = l,4 

37 Z(K.J-l)    =   D(K,1 )*Q<l)+D(K,2)*Q(2)*D(K,3)*Q<3)*D(K,4)*Q<4) 
40  CONTINUE 

DO   41   K = l,4 

41 

A( L,K) 
A(2,K) 
A(3,K) 
A< 4,K) 
B( 1,K) 
B(2,K) 
0( K) = 
A( 1,1) 
A(1,2) 
A(2,2) 
A(2,3) 
A( 3,2) 
A( 4,4) 
B(1,1) 
B(1,2) 
B(2,2) 
B(2,3) 
Q( 1) = 
0( 2) 
DO   42 

0. 

0. 
0. 
0. 
0. 
0. 
0. 

1. 
=   -.5*HS< LU) 
=   1. 
=   A(l,2) 
—   1 • 
=   1. 
=  -1. 
=  A( 1,2) 

=   A(i,2) 
-G<l,LU)*G<l,Lm.5*HS(LU)*<G<2,LU)*G(2,LT)) 
-G(2,LU)*G(2,LT)*.5*HS<LU)*(G<3,LU)*G(3,LT)) 

K = l,4 
DO   42   KK=1,4 

K,KK)      =    AlK^M-DIKfll^CU^MLI   l~D 
-B(K,3)*E(3,KK,LT)-B(K,4)*E(4,KK,LT) 

K,KK)-B(K 
3,K 
<D) 

l)*E(l,KK,LT)-B(K,2)*E(2fKK,LT) 42 D(K 
% 

CALL   INVERT 
DO   43   K=l,4 

43 0(K)   =   Q(K)-B(K,1>*Z(l,LT)-B<K,2)*Z<2,LT)-B<K,3)*Z(3,LT) 
$      -B(K,4)*Z(4,LT) 

DO   44   K=l,4 
44 DGCK.LU)   =  D<K,1)*Q(1)+D(K,2>*Q(2)+D(K,3>*QI3)*D(K,4)*Q(4) 

DO   45   JJ=1,LT 
J   =   LU-JJ 
DO   45   K=l,4 

45 DG(K,J)   =   Z(K.J)-E(K,1 , J) *DGtltJ*l)-EfK.29J)*DGC2VJ*1) 
%     -E(K93vJ)*DG(3tJ+l)-ECKf*f J)*DG(4« J*ll 

£ 



OG(l,l)   =   0. 
DG(2,1)   =   0. 
DO   48   J=l,LU 
00   48   K = l ,4 
IF   C I T   .GT.    1)   GO   TO  48 
DG(K,J>   =   .5««DG(KtJ) 

48 G(K,J)   ■   G( K,J)*DG<K,J) 
TEST   FOR    SEPARATED   PROFILE 
IF   (G(3,l)    .LE.    0.)    PRINT   114,NtITfG (4,1) 
IF   (G< 3,1 )    .LE.   0.)   GO  TO  86 
FIND   JMAX,JMIN, JDEL 
DO   49   J=2,JU i 
JMAX   =   J 
IF   (G(2,J)   .LT.   G(2,J-1))   GO   TO   50 
IF   (J   .EQ.    JDEL)   GO   TO  53 

49 CONTINUE 
GO   TO   53 

50 DO   51   J=JMAX,JU 
JMIN   =   J 
IF   (G(2,J)   .GE.   6(2»J-1)1   GO   TO  52 

51 CONTINUE 
52 IF   (JMIN   .GE.   JDEL)   GO   TO  55 
53 IF   (JMAX   .GE.    JDEL)    JMIN=l 

DO   54   J=*JMIN,LU 
JDEL   -   J 
IF   (G(2,J)   .GT.    .99)   GO  TO 57 

54 CONTINUE 
GO   TO   57 

55 JMIN   =   1 
DO   56   J=JMAX,JU 
JDEL   =   J 
IF   (G(2,J)   .LT.    1.01)   GO   TO  57 

56 CONTINUE 
57 IF   (JMAX   .GT.    JDEL)    JMAX = JDEL 

IF   (MXMN   .GT.   0)    JMI N=l 
IF   (JDEL   .EQ.   JU)   GO  TO  60 
IF   (JMIN   .GT.   1)   G(2,JDEL>   =   1. 
G(ItJDEL)    =   G(lfJDEL-l)*.5*HS(JDEL)*(G(2fJDEL)*G(2fJDEL-1)) 
ADJUST   SOLUTION   FOR   NEW   DELTA 
JSAVE   =   JDEL+1 
DELTA(N)    =   CS*ETA(JDEL) 
DO   59  J*JSAVEfJU £ 
G(lfJ)   =  G( If J-1UHS« J)*G(2,J-i) S 
G(2fJ)   *   1. 
G(3,J)   =   0. 



59 

60 

61 
62 

CONTINUE 
G(3,JDEL)    =   <G(2,JDEL*1)-G(2,JDEL-1))/(ETA(JDEL+1)-ETA(JDEL-1)) 
G(3fJDEL-l)   =   (G(2,JDEL)-G(2,J0EL-2) ) / ( ETA (J DEL )-ET A (J DEL-2 )> 
IF   (JMAX   .LT.    JOEL)    JMAX=JMAX-1 
IF    (JMIN   .GT.    1)    JMIN=JMIN-1 
TEST  FOR   CONVERGENCE 
IF   ( IT   .EO.   1)   GO   TO  61 
TOL   =   .005 
IF   (IT   .GT.    5)    TOL=. 01 
IF   ( IT   .GT.   7)    T0L=.015 
DHW  =   ABS(DG(3,1)/(G(3,1)+.5*DG(3,1))) 
OCPW   =   ABSC0GC4,1I ) 
IF   (DHW   .LT.    TOL   .AND. 
CONTINUE 
CONTINUE 
OUTPUT  AND   STORAGE 
IF   (N   .LE.    3)   GO   TO   92 
IF   ( JMIN   .EQ.    1)   GO   TO 
IF   (G(2,JMIN)*UEP   .LT. 
MXMN   =   MXMN+1 
UEWJ(N)    =   UEP*G(2,JMIN) 

90 

91 

92 

DCPW   .LT.   TOL)   GO  TO   62 

92 
.98*UWJS) GO  TO  92 

J=1,JU 
=   UEP*G(1.J) 
=   G(4,J)MUEP*G(2 ,J)) **2 

.GT.   JMIN)   GO   TO  90 
G(l,J)/G(2,JMIN) 
G(2,J)/G(2,JMIN) 
G(3»J)/G(2,JMIN) 

91 

DO   91 
F( 5,J) 
F( 6,J) 
IF   (J 
G(1,J) 
G(2,J) 
G(3,J) 
GO   TO 
G(ltJ) 
G(2,J)   - 
G(3,J>   = 
G(4,J)   = 
CONTINUE 
JDEL   =   JMIN 
JMIN   =   1 
CONTINUE 
CPWJ(N)   ■   G(4,l> 
CFWJ(N)   =   2.*UEWJ(N)*G(3,1)/(CS*REC) 
UMAX   =   G( 2, JMAX) 
UMIN   ■   G(2,JMIN) 
CPOT  «   l.-UEP**2 
PRINT   100,N,XWJ( N) ,UEWJ(N) ,C PWJ (N) • CPE, CPOT 
PRINT   101 ,CFWJ( N) ,X,DELTA(N) ,UMAX,UMIN 
PRINT   102,1 T,ETA( JMAX) ,ETA( JMIN) ,DHW,DCPW 

G(1,J-1)+HS(J) 
1. 
0. 
G(4, JMI N) 

o 



PRINT   103,J0ELfG(3tl) 
NPRNT   =   0 
IF   (NPRNT   .EO.   0)   GO   TO   64 
PRINT   104 
C 1  ■   2.*UEWJ(N) /(CS*REC) 
DO   63   J = l»LU»3 
C2   =   Cl*EPS(l.J)*(G<3,J)-GG(2.J)*G(2,J)tGG(6,J)*(G(2,J)-l.)) 

63 PRINT   105,ETA< J> »G(l ,J) ,3<2, JJ ,G(3,J) ,G<4fJ), EPS(i,J),C2 
64 CONTINUE 

ADJUST  GRID   FOR   DOWNSTREAM   CALCULATIONS 
IF   (N   .NE.    3)   GO   TO   75 
PRINT   115 
DO   65   J=2,JU 
IF   (ETA(J)   .GT.   .05)   GO   TO  66 

65 JK   =   J*l 
66 CONTINUE 

RS   =   1.055 
GG(l,JK-l)   =   ETAUK-1) 
JEO   =   JU 
DO   67   J=JK,JU 
HSU)   =   HS(J-1)*RS 
IF   (HS(J)   .GT.    1.)   HS(J)=1. 
GG( 1»J)   =  GG(ItJ-1)*HS<J) 
IF   (GG(1,J)    .GT.   ETA(JDEL)    .AND.   GG(l.J-l)    .LT.   ETAUDED)   JEO=J 

67 CONTINUE 
JB 1 
DO 70 J=JK,JEO 
DO 68 JJ = JB »NT 
JA = JJ-i 
IF   (ETA(JJ)    .GE. 

68 CONTINUE 
69 JB   =   JA+1 

Cl   -   <GG(1,J)-ETA<JA))/(ETA(JB)-ETA(JA)) 
DO   70   JJJ=lt4 

70 F(JJJ,J)   =  G(JJJ»JA)*(G(JJJ»JB)-G(JJJtJA))*C1 
DO   71   J*JK.JU 
ETA(J)   =  GG(1,J) 
ET(J)   =   .5*(ETAC J)*ETM J-lll 
GG(3.J)   =  GE/(i.*GE*ET(J)F 
DO   71   JJ=1,4 

71 G(JJ»J)   *  FUJtJ) 
JOEL   =   JEO 
G(2»JDEL)   =   1. 
JK   =   JDEL-M 
DO   72   J=JKfJU 

GG(ltJ))   GO  TO  69 



G( 1,J-1)*HS< J)*G(2,J-1> 
1 • 
0. 
l.-UEP**2 

• AND.   G(2tJ)    .GE.   G(2,J*1)    .AND,   JMAX 

.AND.   GC2,J)    .LE.   GC2tJ*l))   JM IN = J 

G(l,J> = 
G(2,J> = 
G( 3,J) = 
G(4,J)   = 

72 CONTINUE 
JMAX   =   JU 
DO   73   J=2tJDEL 
IF   <G( 2,J)   .GE.   G(2,J-1) 

$      .EO.    JU)    JMAX=J 
IF   <G(2,J)   .LE.   G(2,J-1) 

73 CONTINUE 
IF   ( NPRNT   .EQ.    0)   GO   TO  75 

DO   74   J=1,JU 
74 PRINT   106,ETA( J) ,GU,J) ,G(2, J) ,G(3,J>,G(4,J) 
75 CONTINUE 
86  CONTINUE 

100 FORMAT   </.10H   JET   POI NT ,1 4 ,6X ,4HX I   =,E13.6,3X,4HUE   =,E14.7,2Xf 
S5HCPW   = .E13.6,2X,5HCPE   =,E13.6,2X.10HCP   (POT)   =.E11.4) 

101 FORMAT   (20X,6HTAUW   = ,E12.5t2X,7HDELX I   =fE12.5,IX,7HDELTA   =,E11.4, 
$2X,6HGMAX   = ,E12 . 5 ,2X ,6HGMI N   =,E12.5) 

102 FORMAT   (20X,9HITERATION,14,7X,8HETAMAX   =,F9.4,3X, 
$   8HETAMIN   *,F9.4#3X.5HDHW   = ,El 3.6,2X.6HDCPW   =,E14.7) 

103 FORMAT   (2 OX,8HJDELTA   = ,I4,8X,4HHW   =.E14.7) 
104 FORMAT   (/,8X,3HETA,13X,1HF,15X,1HG,15X.IHH,14X, 2HCP,14X,4HEPS*, 

%    13X.3HTAU) 
105 FORMAT   (7E16.7) 
106 FORMAT   (5E16.7) 
110  FORMAT   (6E13.6) 
114 FORMAT   <//,40H   SEPARATED   PROFILE   CALCULATED 

S12H0N   I TERATI0N.I4.5X.5HCPW   =,E16.7) 
115 FORMAT   (//,42H   GRID   ADJUSTED   FOR   DOWNSTREAM 

RETURN 
END 

AT   STATION, 14,5X, 

CALCULATIONS,// ) 

K3 



.LT.   S(2,N-1)>   S(2,N)=S(2,N-1) 

SUBROUTINE   EDDY   (El,E2,E3,E4,E5,E6,E7,JMAX,JMIN,JDEL.LU,L,IT) 
DIMENSION   S(4f50) 
COMMON/HBDBJE/ETA(121) ,EPS(2,1211,G(4,121),GG(7,121) 
N   =   L 
JE   =   JDEL 
IF   (JMIN   .GT.   1)    JE=JMIN 
S( 1«NI   =   E3 
Cl   =  E1*E2*E3 
IF   (N   .GT.   1   .AND.    IT   .EQ.    1 )C1=1.05*C1*S<1,N-l)/E3 
C2   =   Cl/15. 
C4  =   0. 
DO   4   J=2,JMAX 

U4=   C4*.5*(ETA( J)-ETA( J-l)) *(G(2»J)+G(2.J-l))*(l.-.5*(G(2f J ) 
$   ♦G(2,J-m /G(2t JMAX)) 

S( 2tN)   =  C1*C4 
IF   (N   .GT.   1   .AND.    S(2fN) 
RET  =   S(2,N) 
IF   (RET   .LT.   300.)   RET=300. 
C4  =   (RET*.001)**2 
CK1   =   .4+.19/(1.4-.49*C4) 
CK3   =   26.+ 14. /(1.+C4) 
C4  =   RET/425.-1. 
IF   (C4  .LT.   0.)   C4=0. 
C4   =   l.-EXP(-.243*C4**.5-.298*C4) 
CK2   *   .0168*1.55/(1.+.55*C4) 
C 3   =  CK1**2*C1 
JWJ   =   2 
IF   ( JMIN   .EQ.   1)    JWJ^l 

(JMIN   .EQ.   1   .AND.    JMAX   .EQ.   JDEL)   JWJ=*0 
( JWJ   .EQ.   0)   GO   TO  8 
=   .5*(G(2,JMAX)*G(2,JE)) 
1   J=JMAX,JDEL 

GO  TO  2 

IF 
IF 
C4 
DO 
IF 
JL 
SF 
GD 
GL 
SL 
IF 
IF 

(G(2,J)   .LE.   C4) 
=   J«-l 
=   ETA( JL)-ETA( JMAX) 
=   G(2,JMAX)-G(2,JE) 
=   G(2,JE)/GD 
=   .471 
(GL   .LT.   3.04   .AND. GL   .GT.   1.1)    SL=.403*.035*(GL-1.1) 
(GL   .LE.   1.1)    SL».541*(GL-.52)*(GL-l.l)-1.114*GL*(GL-l.l) 

$     ♦.632*GL*(GL-.52) 
SL   =   SL*SF 
EB   =   1.4 
IF   (GL   .LT.   3.04   .AND.   GL   .GT.   1.1)    EB=1.59-.098*(GL-1.1) 
IF   (GL   .LE.   1.1)   EB«3.65*(GL-.52)*(GL-1.1)-5.71*GL*(GL-1.1) 



$      *2.49*GL*(GL-.52) 
EB   =   ETA( JMAX)+E8*SF 
S< 3,N)   =   C2*GD*SL 
C4   =   E1*ETA( JL) /E6 
CC1   =   l.34*C4**2 
CC   =   ( 1.«-4.48*C4-CC1)**2/(1.*CC1I/(1. + .3*C4) 
S( 3,N)   =   S(3.N)*CC 
IF   (N   .GT.    1)    S<3,N)=.5*($<3,N)«-S(3f N-l ) ) 
S(4.N)   =   S(3,N) 
IF   (N   .GT.    1)   GO   TO  5 
DO   3   J=2tLU 
JJ   =   LU+l-J 
IF   (EPSCltJJI   .LT.   EPSdf JJ4-1I)   GO  TO  5 
EPEB   =   EPS(LVJJ+1I-L. 
C4  =   L + S(4VN) 
C5  =   .5*S(^»N) 
IF   (JWJ   .EQ.    I)    GO   TO  9 
C6   =   ETA< JMAX)*2.3*SF 
DO   6   J=JL.LU 
IF   (ETA(J)    .GT.   C6)   GO  TO  7 
JM   =   J 
C5   =   .5*EPEB 
EB   =   . 8*ETA( JDEL) 
SL   =   .127*ETA( JDEL) 
GO   TO   9 
C5   =   .5*CK2*C1*(ETA< JDEL) *G (2 , JDEL)-G<1 , JOED) 
EB   =   .8*ETA(JDEL) 
SL   =   .127*ETA( JDEL) 
C4  =    l. + 2.*C5 

9   SL   =   1.414+SL 
EPO   =   l.+CK2*Cl*(ETA< JMAX)*G(2.JMAX1-G<1t JMAX)) 
IF   (N   .ST.   I   .AND,   IT  .EQ.   1)   Cl=.95*E1*E2*E3 
C6  =   (C1*G<3,1))**.5 
C7   =   11.8/C6 
C8   =    l.+E 1**2*E2*E4*C7*(1.*.5*E1*C7/E6l/ <E3*G<3, 1)) 
IF   (C8   .LT.    .7)   C8=.7 
C8   =   C8**.5*C6/(CK3*(1.*E1*C7/E6)) 
DO   10  J=*1,JMAX 
C6  =   C8*ETA(J) 
C6   =   CK1*ETA(J)*(1.-EXP(-C6) I 
EPS(1,J)   =   l.*Cl*G(3, J)*C6**2 
IF   (EPSCltJ!   .GT.   EPO)   EPS<1,J)=EP0 
IF   lEPSdtJI   .GE.   EPO)   GO  TO   11 

10 JC   =   J 
11 CONTINUE 

e 



JC   =   JOl 
C6   =   .5*(C4-EPS( 1,JU) 
C7   =   .175*ETA( JMAX) 
C8   =   .65*ETA( JMAX) 
DO   12   J=JC»JMAX 

12 EPS(1»J)   =  EPS(L tJCI+C6*(L.»ERF((ETA(J)-C8)/C7)) 
IF    <JWJ   .EQ.    1)    JM=JMAX 

13 IF   (JWJ   .EQ.   0)    JM=JC 
00   14   J=JM,LU 

H   EPSIUJ)   =   i.*C5*(l.-ERF(<ETA(J)-EB)/SD) 
IF    (JWJ   .LE.    1)    GO   TO   17 
00   15   J=JMAX,JL 

15 EPS(1,J)    ■   C4 
C5   *   EPS( 1,JM)-C4 
C6   =   1.570796/1ETAC JM)-ETA( JL) ) 
DO   16   J=JL,JM 

16 EPS(UJ)   =   C4*C5*(1.-C0S(C6*(ETA(J)-ETA<JL)))) 
17 DO   18   J = l ,LU 
18 EPS(2,J)   =   EPS(1 ,J)*GG(4f J) 

C7   =   -.1387/SF 
C6   =   ETA( JMAX)*. 85*SF 
C5   =   .6 
C4   =   l./:5*«3/ETA( JMAX) 
C5   =   C5*ETA(JMAX) 
DO   20   J=ltLU 
C8   =   0. 
IF    (ETA(J)    .LT.   C5)   C8=C4*ETA(J) 
IF   (ETA(J)    .GE.   C5   .AND.    J  . LE.    JMAX)    C8= (ET A( JM AX )/ ET A( J I )** 2 
IF   (J   .GT.    JMAX   .AND.   ETA(J)    .LE.   C61   C8=l.-i.387* 

$   (<ETA( J)-ETA( JMAX))/SF)**2 
20  GG(6,J)   =   C7*C8 

RETURN 
END 

Ui 



SUBROUTINE   RADIUS   <X,RC) 
KINO   AIRFOIL 
RC   =   .037777778 
IF   ( X   .LT.   •001)   RC=.l 
IF   ( X   «EQ.   0,)    RC=.408 
RETURN 
END 

"Vo 



SUBROUTINE   INVERT   (D) 
DIMENSION   0(4,4) ,U(4, 
INVERT  A   4X4   MATRIX 
00   1   J = l,4 
U(J,l)    =  D(J,l) 
00   2   J=2,4 
U( 1,J)    =   D( 1,J)/U(1 ,1 
U(J,2)   =   0(J,2)-U(J,1 
DO   3   J=3,4 
U( 2,J)   =   (D(2,J)-U(2. 
U< J,3)   =  D( J,3)-U(J,l 

=   (D(3,4)-U(3, 
=   D(4,4)-U<4,1 

=   U(2,2)*U(3. 
- -U(2.1)*U(3 
- U(2,l) *U(3, 
=   U(2,l)*U(4, 

4) ,UI (4,4) 

U( 3,4) 
U(4,4) 
UK 
UK 
UK 
UK 

1,1) 

4, 
-y(2,l)«Ü(3,2)*U( 

UK1,2) 
UI(2,2) 
UK 3,2) 
UK4,2) 
UK 1,3) 
UI(2,3) 
UK3,3) 
UK4.3) 
UK 1,4) 
UK2,4) 
UK 3,4) 
UK4,4) 
DO   4   J=l,4 
D( 4,J)   =   UI(4,J) 
DO   5   J = l,3 

-UK.2) 
U(l,l)*U(3, 
-U(l,i)*U(3 
U(1,11*U(3, 
U( 1,2) *U(2, 
-U(2,3) 
U(1,1)*U(2, 
-U< t,l)*U(4 
-U(1,2)*U<2 
U(2,3)*U(3, 
-U(3,4) 
U(1,1)*U(2, 

) 
)*U(1 ,2) 

i)*UU,J) )/U(2,2) 
)*U(l,3)-U(J,2)*U(2,3) 
1)*U(1,4)-U(3,2)*U(2,4) )/U<3.3 I 
)*U(1 ,4)HJ(4,2) »U(2,4)-U(4, 3)*U(3,4) 
3>*U(4,4) 
,3)*U(4 ,4) 
2)*U(4,4)-U(3,1)*U(2,2)*U(4,4) 
2)*U(3,3)«-U(3,1)*U(2,2)*U<4,3) 
4,3)-U(2,2)*UC3f3)*U(4,i) 

3)*U(4,4) 
,2)*U(4,4) 
21*U<4,3)-U(1,1)*U(4,2)*U(3,3) 
3)-U(l,3) 

2)*U(4,4) 

!3)*Üi3,,4Uu(l,2)*UC2,4)MJCl,3)*U(3,4)-U(l,4) 
4) -U(2,4) 

2)*U(3,3) 

D( J,4)    =   UK J,4) *U1 (4 
D( 3,J)   =   UK 3,J) + UI 13 
D( 2,J)   =   UI(2,3)*UI<3 

UK 1.3)*UI(3 
D(2,2)*UI (2, 
D(2,1H-UK2, 
D( 1,2)*UK 1, 
D( 1,1)*UK1, 

=   U( 1,1)*U(2,2)*U<3 
6   J=l,4 

D( 
D( 
D( 
D( 
D( 
C 
DO 

It J) 
2,2) 
2,1) 
1,2) 
1»1) 

t4) 
,4) *UI C4,J) 
,J)*UI(2,4)*UI(4,J) 
.J)*UI (1,4)*UI (4,J) 
2) 
1) 
2) *UI (2,2) 
1)*UI (1 ,2)*UK2,l) 
,3)*U(4,4) 

DO   6   K=l,4 
D(J,K)   =   D(J,K)/C 



C    =   ABS(C) 
IF   (C   .LT.   l.E-3) 
FORMAT   (38H   NEARLY 
RETURN 
END 

PRINT   7.C 
SI NGULAR MATRIX,    DETERMINANT   =.E18.7) 

00 



to jf si- 

SUBROUTINE    SLOTBL 
DIMENSION   A<5,241) .ETA<121) 
COMMON/JETMIX/HS<121) ,F ( 6 ,12 1) , S < 18 ) 
COMMON/BLSLBL/EDV( 5,241) ,NBL,NEDGE 
COMMON/MAINSL/STFTC7) .LAMSL 
EQUIVALENCE   (A<1 ,1) ,EDV<I ,1)) 
DO   1   J=ltJ 
S( J)   =   STFTt J) 
CS   -   S( 1) 
UT   =   S(6) 
Ci   =  CS*S<2) *UT 
C2   =   UT/SC3) 
HSJET   =   .0005 
RS   =   1.13 
JU   ■   121 
HS( II    =   HSJET/RS 
ETA(1)   =   0. 
DO   2   J=2,JU 
HSt J)   ■  HS( J-l)*RS 
IF    (HSU)   .GE.    .04)   HS<J)=.04 
ETA(J)    =   ETA(J-l)fHS(J) 
IF   (ETA(J)    .GT.    .006)    RS=l.l 

.GT.    .1)   RS=1.15 

.GT.   .45)   GO   TO 3 

IF   (ETAU) 
XL   =   J 
IF   (ETA(J) 

2 CONTINUE 
3 HCL   =   .5-ETACJCL) 

HS(JCL«-1)   =   2.*HCL 
ETA(JCL*1)   =   ETA(JCL)VHS( JCL+1 ) 
DO   4   J=2,XL 
K   =   JCL+J 
I   =   JCL+2-J 
HS(K)   =  HS(I ) 

4 ETA(K)   =   ETA(K-1I*HS(K) 
JD   =   2*JCL 
CI   *   0. 
F(1,11   =   0. 
F(2,1)   =   0. 
F( 3,1)   *  C1*C2 
F( 5,1)    =   1. 
DO   5   J = 2,XL 
F(5,J)   =   l.«-.4*(Cl*ETA( J) )**3/UCl*ETAf j))**2+324.) 

IF 
Ft 

/(l.*6.8*CS*ETA< J)/S(l) ) 
(LAMSL   .EQ.    1)   F(5,J)    =1. n»..*. 

3,J)   »   F( 3,1)/F(5,J)*(1.-2.*CS*ETA(J)/S(1) ) 
v£> 



F(2,J)   =   F<2tJ-l)*.5«HSIJ)*(FI3fJ)*FC3iJ-ll) 
F(lfJ)   =   F( l.J-l)*.5*HS( J) *(F(2 t J)*F(2tJ-ll) 
CI   =   C1*.5*HS( J)*(F(2VJ)**2 + F(2»J-1>**2) 
CI   =   2.*CH-2.*HCL*F(2fJCL)**2 
F(1,JCL*1)    =   F( 1 f JCLU2.*HCL*F (2» JCL) 
DO   7   J=1,XL 
K   =   JCL + J 
I   =   JCL+l-J 
IF   (J   .EQ.   1)   GO   TO   6 
F(lfK)   =   F(i,K-lKF(l,I*l)-F(i,n 
F( 2,K)   =   F(2tl) 
F(3,K)   =   -F(3tl) 
F(5,K)   =   F(5,I) 
CMU  =   2.*CS*S(3)**2*CI 
UAVE   =  CS*S(3)*FU ,JD>/SU) 
CJ   =   CS*S(3)*F(1 , JD) 
UMAX  =   S(3)*F(2,JCL) 
PRINT   101 
PRINT   !02.CMUtC JtUAVE,UMAX,FC3tl) 
JBL   ■   NEDGE+10 
IF   (JBL   .GT.   NBL)    JBL   =   NBL 
JLO   *   JU-JO 
JO   =   (6*JBL-3*JL0)/(2*JL0)*1 
JR   =   JLO/3 
JL   =   J9+1 
JRl   =   JR*JL 
JR2   =   2*JR+JL 
C3   =  (2.*S( 5))**.5/(CS*S(2)**.5*S(3n 
K   =   1 
LL   «   0 
DO   8   J=JL,JU 
LL   ■   LI>1 
IF   (LL   .EQ.   1   .AND.    J   . LE.    JRl)   GO  TO 8 
K   =   K*l 
IF   (J   .GT.   JR2)    K*K*J0 
ETA(J)   =   ETA( JD)*C3*A(1 ,K) 
F(1,J)   =   F(i, JD)*C3*A(2,K) 
F(2.J)   =   A(3,K) 
F(3,J)   *   A(^fK) /C3 
F(5,J)   =   A(5.K) 
IF   (LL   .EQ.   II    LL—1 
DO   9   J = JL,JR1.2 
ETA(J)   =   .5*(ETA(J-1)*ETA(J* 
F(1,J)   *   .5*<F(Lf J-l)*FCl9 J* 
F(2,J)   =   .5*(F(2,J-1)*F(2,J+ 

111 
1)) 

I 



F(3,J)    =   .5*(F(3 ,J-1)*F<3 ,>!)) 
9   F(5fJ)    =   .5*IF(5,J-l)+F<5VJ+1>) 

00   11   J=1»JU 
IF   (J   .GT.    JD)   HS( J) =ETA< J)-ETA<J-1> 

11 CONTINUE 
S( 5)    =   0. 
DO   12   J=1,JU 
IF   (J   .GT.   JL   .AND. 

S   S< 5)    -   S(1)*ETA( J) 
12 F(A.J)   =    SU) 

S(4)    =   S( 3) 
NPRNT   =   0 
IF   (NPRNT   .EQ.   0)   GO 
DO   10   J=ltJU 

10   PRINT   104«ETA( J) «F(l»J) vF(2tJ) tF(3vJ)vFUvJ)vFC5tJ) 
13 CONTINUE 

101 FORMAT   <///f10X,24H   JET   STARTING   CONDITIONS) 
102 FORMAT   </,6H   CMU   = ,F 8. 5 ,5X ,*HCM  =,F   9 .6 ,5X ,6HU AV E   = ,F7.3,5Xf 

$   6HUMAX   =,F7.3,5X,4HHW   =»F7.2) 
1C4   FORMAT   (6E13.6) 

RETURN 
END 

F(2,J»   .GT.    .99    .AND.   S(5)    .EQ.   0.) 

TO   13 

00 
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